An Evolutionary Disc Model of NGC 5907
Abstract
An evolutionary disc model of the edge-on galaxy NGC 5907 based on a continuous star formation history and a continuous dynamical heating of the stellar subpopulations is presented. This model explains in a natural way the two observational facts falling somewhat apart: 1) the exponential vertical disc structure in the optical and NIR of the non-obscured part of the stellar disc and 2) the enhanced FIR/submm luminosity by about a factor of four near the obscured mid-plane, which requires additional dust and also stellar light to heat the dust component. We use multi-band photometry in U, B, V, R, and I- band combined with radiative transfer through a dust component to fit simultaneously the vertical surface-brightness and colour index profiles in all bands adopting a reasonable star formation history and dynamical heating function. The vertical distribution of the stellar subpopulations are calculated self-consistently in dynamical equilibrium and the intrinsic stellar emissivity is calculated by stellar population synthesis. The final disc model reproduces the surface-brightness profiles in all bands with a moderately declining star formation rate and a slowly starting heating function for young stars. The total dust mass matches the amount required from the FIR/submm measurements. Without a recent star burst we find in the midplane an excess of 5.2-, 4.0-, and 3.0-times more stellar light in the U-, B-, and V-band, respectively. The corresponding stellar mass-to-light ratios are 0.91 in V- and 1.0 in R-band. The central face-on optical depth in V-band is 0.81 and the radial scale length of the dust is 40% larger than that of the stellar disc. This type of evolutionary disc models is a powerful method to understand the vertical structure of edge-on galaxies. Insights to the star formation history and the dynamical evolution of stellar discs can be gained. FIR/submm observations are necessary to restrict the parameter space for the models.
- Publication:
-
Galaxy Evolution across the Hubble Time
- Pub Date:
- May 2007
- DOI:
- Bibcode:
- 2007IAUS..235..112J