Weak Lensing in Scalar-Tensor Theories of Gravity: Preliminary Results
Abstract
Scalar-tensor (ST) theories of gravity are the best motivated alternative to general relativity (GR), arising in every high-energy theory attempting to unify all the fundamental interactions. Furthermore, accomodating an arbitrary number of scalar fields, ST theories yield to cosmological scenarios with a dynamical realization of the dark energy. Solar-System experiments and binary-pulsars observations are compatible with very small departures from GR on the local universe (z≃ 0); on cosmological scales, big-bang nucleosynthesis and cosmic microwave background (CMB) observables can admit larger deviations from the predictions of GR. Weak lensing could provide a test for ST theories of gravity on intermediate scales. Based on a code developed to study ST theories on CMB observables, we implemented a plug-in code to compute the convergence power spectrum and some 2-points statistics. Preliminary results using a simple model of ST theory are presented. This study is aimed to constraint classes of ST models.
- Publication:
-
Gravitational Lensing Impact on Cosmology
- Pub Date:
- June 2005
- DOI:
- Bibcode:
- 2005IAUS..225..129S