Effects of multi-dimensionality and energy exchange on electrostatic current-driven plasma instabilities and turbulence
Abstract
Large-amplitude current-driven plasma instabilities, which can transition to the Buneman instability, were observed in one-dimensional simulations to generate high-energy back-streaming ions. We investigate the saturation of multi-dimensional plasma instabilities and its effects on energetic ion formation. Such ions directly impact spacecraft thruster lifetimes and are associated with magnetic reconnection and cosmic ray inception. An Eulerian Vlasov-Poisson solver employing the grid-based direct kinetic method is used to study the growth and saturation of 2D2V collisionless, electrostatic current-driven instabilities spanning two dimensions each in the configuration (D) and velocity (V) spaces supporting ion and electron phase-space transport. Four stages characterise the electric potential evolution in such instabilities: linear modal growth, harmonic growth, accelerated growth via quasi-linear mechanisms alongside nonlinear fill-in and saturated turbulence. Its transition and isotropisation process bears considerable similarities to the development of hydrodynamic turbulence. While a tendency to isotropy is observed in the plasma waves, followed by electron and then ion phase spaces after several ion-acoustic periods, the formation of energetic back-streaming ions is more limited in the 2D2V than in the 1D1V simulations. Plasma waves formed by two-dimensional electrostatic kinetic instabilities can propagate in the direction perpendicular to the net electron drift. Thus, large-amplitude multi-dimensional waves generate high-energy transverse-streaming ions and eventually limit energetic backward-streaming ions along the longitudinal direction. The multi-dimensional study sheds light on interactions between longitudinal and transverse electrostatic plasma instabilities, as well as fundamental characteristics of the inception and sustenance of unmagnetised plasma turbulence.
- Publication:
-
Journal of Plasma Physics
- Pub Date:
- March 2024
- DOI:
- arXiv:
- arXiv:2401.05428
- Bibcode:
- 2024JPlPh..90b9006C
- Keywords:
-
- plasma simulation;
- plasma instabilities;
- plasma dynamics;
- Physics - Plasma Physics;
- Physics - Computational Physics;
- Statistics - Applications