Solution of Grad-Shafranov equation by the method of fundamental solutions
Abstract
In this paper we have used the Method of Fundamental Solutions (MFS) to solve the Grad-Shafranov (GS) equation for the axisymmetric equilibria of tokamak plasmas with monomial sources. These monomials are the individual terms appearing on the right-hand side of the GS equation if one expands the nonlinear terms into polynomials. Unlike the Boundary Element Method (BEM), the MFS does not involve any singular integrals and is a meshless boundary-alone method. Its basic idea is to create a fictitious boundary around the actual physical boundary of the computational domain. This automatically removes the involvement of singular integrals. The results obtained by the MFS match well with the earlier results obtained using the BEM. The method is also applied to Solov'ev profiles and it is found that the results are in good agreement with analytical results.
- Publication:
-
Journal of Plasma Physics
- Pub Date:
- June 2014
- DOI:
- 10.1017/S0022377814000026
- Bibcode:
- 2014JPlPh..80..477N