Coherent quantum hollow beam creation in a plasma wakefield accelerator
Abstract
A theoretical investigation of the propagation of a relativistic electron (or positron) particle beam in an overdense magnetoactive plasma is carried out within a fluid plasma model, taking into account the individual quantum properties of beam particles. It is demonstrated that the collective character of the particle beam manifests mostly through the self-consistent macroscopic plasma wakefield created by the charge and the current densities of the beam. The transverse dynamics of the beam-plasma system is governed by the Schrödinger equation for a single-particle wavefunction derived under the Hartree mean field approximation, coupled with a Poisson-like equation for the wake potential. These two coupled equations are subsequently reduced to a nonlinear, non-local Schrödinger equation and solved in a strongly non-local regime. An approximate Glauber solution is found analytically in the form of a Hermite-Gauss ring soliton. Such non-stationary (`breathing' and `wiggling') coherent structure may be parametrically unstable and the corresponding growth rates are estimated analytically.
- Publication:
-
Journal of Plasma Physics
- Pub Date:
- August 2013
- DOI:
- Bibcode:
- 2013JPlPh..79..397J