Spectroscopic study of unique line broadening and inversion in low-pressure microwave generated water plasmas
Abstract
It was demonstrated that low pressure (∼0.2 torr) water vapor plasmas generated in a 10 mm inner diameter quartz tube with an Evenson microwave cavity show at least two features that are not explained by conventional plasma models. First, significant (gt2.5Å) hydrogen Balmer alpha line broadening, of constant width, up to 5 cm from the microwave coupler was recorded. Only hydrogen, and not oxygen, showed significant line broadening. This feature, observed previously in hydrogen-containing mixed gas plasmas generated with high voltage dc and rf discharges, was explained by some researchers as resulting from acceleration of hydrogen ions near the cathode. This explanation cannot apply to the line broadening observed in the (electrodeless) microwave plasmas generated in this work, particularly at distances as great as 5 cm from the microwave coupler. Second, inversion of the line intensities of both the Lyman and Balmer series, again at distances up to 5 cm from the coupler, were observed. The line inversion suggests the existence of a hitherto unknown source of pumping of the optical power in plasmas. Finally, it is notable that other aspects of the plasma including the OH* rotational temperature and low electron concentrations are quite typical of plasmas of this type.
- Publication:
-
Journal of Plasma Physics
- Pub Date:
- December 2005
- DOI:
- arXiv:
- arXiv:physics/0401103
- Bibcode:
- 2005JPlPh..71..877M
- Keywords:
-
- Physics - Plasma Physics
- E-Print:
- 27 pages, 7 figures