Filament model for a stationary field electron ring accelerator: the generalized Bernstein—Green—Kruskal problem
Abstract
The longitudinal behaviour of the electron ion ring in a stationary electron ring accelerator (ERA) is studied by means of a filament model which neglects the radial thickness of the ring. There are two widely different time scales (short or STS of the order of a bounce time in the ring, and long or LTS) that characterize the system. The Vlasov equations for a system which is stationary on the STS can be solved in the ion-pickup region by an approximation in which each species of particle essentially sees only a potential well formed by the other species. This gives a generalization of the classical Bernstein-Greene-Kruskal (BGK) problem, in which both species move in the same potential. The conditions under which this generalized BGK problem is well defined are given, and broad classes of quasi-equilibria (i.e. equilibria on the STS) are obtained. The time dependence on the LTS of some of these quasi-equilibria is then obtained by invoking charge conservation, momentum conservation and the adtained invariance of longitudinal action integrals. The stability of these quasi-equilibria (i.e. their behaviour under time-dependent perturbations on the STS) is deferred to a subsequent paper.
- Publication:
-
Journal of Plasma Physics
- Pub Date:
- October 1974
- DOI:
- 10.1017/S0022377800025083
- Bibcode:
- 1974JPlPh..12..233E