Dispersion of electron Bernstein waves including weakly relativistic and electromagnetic effects. Part 2. Extraordinary modes
Abstract
Extraordinary solutions of the weakly relativistic, electromagnetic dispersion relation are investigated for waves propagating perpendicular to a uniform magnetic field in a Maxwellian plasma. As in a companion paper, which treated ordinary modes, weakly relativistic effects are found to modify dramatically the dispersion predicted by strictly non-relativistic ‘classical’ theory in the neighbourhood of harmonics of the cyclotron frequency Ωe. The infinite families of classical Gross-Bernstein and Dnestrovskii-Kostomarov modes are truncated to include only harmonics s satisfying s (ω2p mc2/4kB TΩ2e)⅓ and s (ωp/Ωe)⅔/8 respectively where ωp is the plasma frequency and T the temperature. All classical cut-offs and resonances are removed apart from the x- and z- mode cut-offs. The only coupling between large- and small-wave-vector modes is between the z mode and a Gross-Bernstein mode near the upper-hybrid frequency and between the x mode and the second Gross-Bernstein mode near 2Ωe. Dispersion of the weakly relativistic counterpart of the x mode departs only slightly from that predicted by cold plasma theory except near Ωe and 2Ωe.
- Publication:
-
Journal of Plasma Physics
- Pub Date:
- June 1987
- DOI:
- 10.1017/S0022377800012307
- Bibcode:
- 1987JPlPh..37..449R