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2nd WIESP at IJCNLP-AACL 2023

Building on the success of the First WIESP at AACL-IJCNLP 2022, the Second Workshop on
Information Extraction from Scientific Publications (WIESP) provided a platform for researchers to
foster discussion and research on information extraction, mining, generation, and knowledge discovery
from scientific publications using Natural Language Processing and Machine Learning techniques.
Much technological change happened in one year (since the 1st WIESP), especially with Generative
Artificial Intelligence research. We incorporated a few additional topics to stay abreast with the latest
developments and research in the community.

The Workshop on Information Extraction from Scientific Publications (WIESP) is a forum to foster
discussion and research using Natural Language Processing and Machine Learning. In this space, leading
professionals, organizations, early career researchers and students can cooperate towards building the
algorithms, models, and tools that will pave the way for machine comprehension of science in the future.

WIESP 2023 received 22 submissions, of which 17 were accepted (15 papers and 2 shared task system
papers).

WIESP 2023 was held on November 1st 2023.
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Investigating the Impact of Syntax-Enriched Transformers on Quantity
Extraction in Scientific Texts

Necva Bölücü, Maciej Rybinski, Stephen Wan
CSIRO Data61

{necva.bolucu;maciek.rybinski;stephen.wan}@csiro.au

Abstract
Measurement extraction is an information ex-
traction subtask focused on extracting quan-
tities and their dependent entities within a
given scientific text. Quantity extraction is
the first and most important step in measure-
ment extraction. Most existing approaches
model the problem as a sequence-labeling task
using pre-trained language models (PLMs).
However, none of the existing systems have
utilised explicit syntactic knowledge to ex-
tend the PLM-based modeling. We propose a
syntax-enriched extension by integrating depen-
dency tree representations as syntactic knowl-
edge into transformer-based language models
to address the task of quantity extraction. We
apply our approach to a range of established
transformer-based models to evaluate our ap-
proach and analyze its impact in experiments
on scientific literature datasets. Our experimen-
tal results and in-depth analysis show that our
approach, syntax-enriched RoBERTa, outper-
forms the other models, even in situations with
scarce training data in the scientific domain.
The results demonstrate the adaptability of the
proposed model to the tasks, especially useful
in low-resource scenarios.1

1 Introduction

Current growth rates in scientific publishing in-
crease the interest in extracting information from
scientific documents to provide scientists with
improved methods for organising, indexing, and
querying the vast existing literature (Nasar et al.,
2018; Weston et al., 2019; Hong et al., 2021). Infor-
mation extraction (IE) is a task enabling extracting
and organising information from large amounts of
data from unstructured sources. IE includes several
subtasks, such as named entity recognition (NER),
relation extraction (RE), and relation classifica-
tion (RC). Properties specific to scientific docu-
ments result in IE subtasks tailored for IE in the

1The code is publicly available at https://github.com/
adalin16/syntax_NER.

scientific literature and applied in various domains,
e.g., biomedical (Lewis et al., 2020; Zhang, 2021;
Gérardin et al., 2023) or chemistry (Rocktäschel
et al., 2012; Luo et al., 2018; He et al., 2020).

One such example is the subtask of extracting
measurements and their contexts, as scientific re-
search often relies on precise measurements for
the reproducibility of experimental methods. The
reproducibility supports extending and building
on top of others’ work, thus promoting scientific
progress. The automatic detection of the measure-
ments and their contexts in scientific texts is a key
enabling factor for producing high-quality quantity-
centric search systems for scientific literature (Liu
et al., 2017; Kang et al., 2017; Kononova et al.,
2019).

Figure 1: Subtasks of MeasEval shared task (Harper
et al., 2021).

Measurement extraction (ME) is a type of IE
subtask for scientific documents focused on the
identification of quantities and related information
and classification of relations between identified
quantities and related entities (Göpfert et al., 2022).
A large body of research in ME is centered around
MeasEval (Harper et al., 2021), a shared task that
also introduced a new annotated ME dataset con-
sisting of scientific articles from different scholarly
domains. MeasEval decomposes the ME into five
finer subtasks, presented in Figure 1.

• Subtask 1: Quantity Extraction is the task of
identifying quantities—numeric values with
corresponding (optional) units of measure-
ment and modifiers2. For example, in an ex-
pression ‘over 5 tonnes’, 5 is the numeric

2Modifiers are tokens in the quantity span that modify the
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Figure 2: Sample sentences with annotation of quantity and dependent entities.

value, ‘tonnes’ is the unit of measurement,
and ‘over’ is the modifier.

• Subtask 2: Unit Detection & Modifier Extrac-
tion has two sub-problems. Unit detection is
the task of extraction of units from extracted
quantities and Modifier Extraction is the task
of classifying quantities into different modi-
fiers (e.g., ‘count’, ‘range’, ‘mean’, etc.).

• Subtask 3: Measured Entity (ME) & Mea-
sured Property (MP) Extraction is the task
of extracting dependent entities that elaborate
the extracted quantity (e.g., ME: ‘GHQ symp-
tom caseness’, ‘response categories’, etc., MP:
‘sensitive’, ‘scores’, ‘transit depths’, etc.).

• Subtask 4: Qualifier (QUAL) Extraction is the
task of extracting dependent entities which
qualify the extracted quantity (e.g., ‘after 13
passages’, ‘orbits the planet’ etc.).

• Subtask 5: Relation Extraction is the task of
extracting relations (‘has quantity’, ‘has prop-
erty’, ‘qualifies’) between extracted quantities
and dependent entities (‘measured properties’,
‘measured entities’, ‘qualifiers’) and their rela-
tions to the extracted quantities.

Here, we focus on the first subtask—quantity
extraction—which is required for the other sub-
tasks: its results are directly used for subtasks 2, 3,
and 4. Finally, the results of subtask 1 and 4 are
used for subtask 5. This highlights the importance
of quantity extraction to the overall success of the
ME models, as errors incurred at this stage are prop-
agated downstream (Göpfert et al., 2022). Sample
sentences for quantities and dependent entities are
given in Figure 2.

Existing methods for quantity extraction model
the problem as a sequence labeling task and
usually fine-tune pre-trained language models
(PLMs) (Davletov et al., 2021a; Gangwar et al.,

meaning of the quantity, for example, ‘greater than’, ‘over’,
‘fewer than’.

2021b). However, such models do not capture
some of the syntactic relations and long-range
word dependencies, which have been proven to
have a positive impact on natural language under-
standing (Du et al., 2021). So far, the integration
of linguistic knowledge and graph structures into
transformer-based PLMs has been proposed for var-
ious natural language processing (NLP) problems
(e.g., Machine Translation (MT) (Bugliarello and
Okazaki, 2019; Akoury et al., 2019), Semantic Tex-
tual Similarity (STS) (Peng et al., 2021)), but not
for quantity extraction.

Here, we propose to improve the self-attention
mechanism of PLMs to incorporate syntactic infor-
mation for quantity extraction – Syntax-Enriched
Quantity Extraction (SEQE) (§3.2)3. Similar to
previous studies that used dependency tree rep-
resentation as syntactic information (Bugliarello
and Okazaki, 2019; Guo et al., 2021), we use the
dependency tree representation of the input sen-
tence to generate syntax-enriched local attention of
the PLM encoder, which provides structural infor-
mation representing human understanding of the
text. Since there are numerous PLMs pre-trained
on different NLP data and the size of these mod-
els varies in terms of the number of parameters,
we test our proposed model SEQE with different
PLMs: BERT (Devlin et al., 2019), RoBERTa (Liu
et al., 2019), and LUKE (Yamada et al., 2020) (see
§4). Our method is simple yet effective, improves
the task of quantity extraction, and achieves perfor-
mance gains over baseline PLMs.

Overall, we provide a detailed analysis with pre-
diction interpretation and error analysis pointing to
future research directions in measurement extrac-
tion (see §5).

2 Related Work

Quantity Extraction In the literature, quantity
extraction is often solved as a sequence label-

3“Syntax-enriched" and “syntax-aware" are used inter-
changeably in the literature implying integration of syntactic
information into the systems.
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Figure 3: The overall Architecture of SEQE. Note that the syntax mask is generated from the dependency tree
representation of the input, where m=1 is used for the sample sentence and the dark green color in the mask
represents the value ‘1’ and the light-green color represents the value ‘0’.)

ing problem using several methods, such as Con-
ditional Random Field (CRF) (Foppiano et al.,
2019), Bidirectional Long Short-Term Memory
(BiLSTM) (Huang et al., 2015), transformer-based
pre-trained language models (PLMs) with fine-
tuning (Davletov et al., 2021b; Cao et al., 2021).
Most of the systems submitted to the MeasEval
shared task use PLMs for the problem. Davletov
et al. (2021b) fine-tune LUKE NER model (Ya-
mada et al., 2020) for quantity extraction as se-
quence labeling problem. Cao et al. (2021) ap-
ply a cascaded approach, extracting quantities via
RoBERTa (Liu et al., 2019) encoder with an en-
sembling of PointerNet (Vinyals et al., 2015) and
a CRF layers on top of the encoder. Gangwar et al.
(2021a) extract quantities using SciBERT with a
CRF layer for the sequence labeling problem (SciB-
ERT (Beltagy et al., 2019) is another BERT variant
pre-trained on papers from the scientific corpus (se-
manticscholar.org)). Karia et al. (2021) use a simi-
lar approach with BioBERT (Lee et al., 2020)—a
BERT variant pre-trained on a biomedical corpus
from a BERT checkpoint.

Syntax-Enriched Models Recently, models that
integrate syntactic information—so-called syntax-
enriched models—have been applied to various
NLP problems, such as machine translation (Bast-
ings et al., 2017; Nguyen et al., 2020), semantic
role labeling (Wang et al., 2019; Marcheggiani and
Titov, 2019), and question answering (Schlichtkrull
et al., 2020). These models have gained attention
due to their enhanced ability to capture information

over long distances, especially between discontinu-
ous constituents (Wang and Li, 2022). In contrast
to these models, we incorporate the syntactic infor-
mation using a distance-based masking approach
and use it to alter the activation propagation in the
attention heads of PLMs to improve the quantity
extraction task. There are also studies that inte-
grate syntactic information into the attention mech-
anisms of transformer-based models such as LISA
(Linguistically-Informed Self-Attention) (Strubell
et al., 2018) and Syntax-BERT (Bai et al., 2021).
These models inject syntactic information by using
only syntactic parents of tokens as masks to the
one attention head (Strubell et al., 2018), or by gen-
erating 3 masks (parent, child, and sibling masks)
from the syntax tree and injecting them into the
attention mechanism of PLMS by utilising topical
attention layer to aggregate task-oriented represen-
tations. Both of these approaches are different from
the method proposed in this paper.

Although there is no attempt in the literature to
extract quantities using syntactic information, there
are studies that show promise in using syntactic in-
formation for RE (Tian et al., 2021, 2022; Sun and
Grishman, 2022) and NER (Aguilar and Solorio,
2019; Nie et al., 2020; Xiong et al., 2022). How-
ever, these approaches do not integrate syntactic
information in the attention-level of transformer-
based PLMs.
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3 Method

In this section, we present the proposed model
that exploits syntactic information for quantity ex-
traction. We base our model on the architecture
of Transformer (Vaswani et al., 2017) and inte-
grate syntactic information into the encoder with
a syntax-enriched local attention mechanism for
quantity extraction task. This method allows to
incorporate syntactical constraints and long-range
syntactic word dependencies into the sentence with
syntactic representation without external informa-
tion for the problem.

First, we describe the self-attention mechanism
in Section 3.1. Then, we introduce the syntax-
enriched quantity extraction model (SEQE) in Sec-
tion 3.2.

3.1 Preliminaries
Self-Attention Transformer architecture intro-
duced by Vaswani et al. (2017), has become ubiq-
uitous in modern NLP, as it offers significant ef-
fectiveness improvements on many problems. The
transformer consists of encoder-decoder blocks and
uses stacked self-attention to encode contextual
information for input tokens in which three com-
ponents of queries Q, keys K, and values V are
learned during training.

Attention is described as a mapping between Q,
and (K, V) pairs to obtain an output vector. We
describe the simplest form, single-head attention
A which is computed using the scalar-dot prod-
uct between a query and the keys, followed by its
softmax to obtain the weights of values:

A(Q,K,V) = softmax(
QKT

√
d

)V, (1)

where d is the dimension of keys which is used
as a scaling factor in the equation. We note
that, in practice, the attention matrix is a se-
ries of such attention heads, called multi-head
attention, given by MultiHead(Q,K, V ) =
concat(head1, · · · , headh)WO.

3.2 Syntax-Enriched Quantity Extraction
As mentioned earlier, one limitation of PLMs is
that they take a sequence of tokens as input with-
out explicitly incorporating structural information.
Some previous works have tried to induce syntactic
structure into the self-attention layer (Strubell et al.,
2018; Bai et al., 2021). Syntax-Enriched Quan-
tity Extraction (SEQE) is designed to incorporate

syntactic information in the self-attention layer of
transformer-based PLM for quantity extraction task.
The overall architecture of the proposed model is
illustrated in Figure 3. As shown in the figure, we
generate a syntax mask for the input sentence in
a preprocessing step: (1) the dependency tree rep-
resentation of the input sentence is generated by
an external parser, (2) the dependency matrix is
extracted from the dependency tree representation
given as a graph G = (V,E,X), where V is the
set of nodes (skipping ROOT node), E is the set
of labeled edges representing dependency relations
(without labels), and X is the set of tokens of the
sentence. Each token xi is mapped to a node vi
and the distance, from node vi to vj is denoted by
dis(vi, vj)) and D(i, j) = min dis(vk, vj), k ∈
[i− 1, i+ 2]. (3) syntax mask is generated using a
dependency matrix as follows:

Mij =

{
0 D(i, j) ≤ m

−∞ otherwise,
(2)

where m is a distance threshold hyperparameter for
syntax mask that needs to be fine-tuned.

Next, the sentence is embedded similarly to
a standard PLM and given as input to the self-
attention layer with a syntax-enriched local atten-
tion mechanism. Syntax-enriched local attention,
where tokens can attend to other tokens if they are
close in the dependency tree representation (m), is
computed as follows for a given query Q and key
K:

softmax(
QKT

√
d

+M)V (3)

4 Experiments

4.1 Task

Quantity Extraction task is based on the extrac-
tion of quantities q1, · · · , qm from a given sen-
tence s = w1, · · · , wn where a quantity qi is a
sequence of words. The problem can be formu-
lated as a token-level classification task in which
the model takes a set of input-output pairs Z =
{(w1, y1), · · · (wn, yn)} and try to classify using a
function f : X → R that maps given words into
a set of labels y ∈ Y (B-Quantity, I-Quantity, O),
BIO tags for NER problem.

4.2 Datasets

We use two English datasets for the quantity extrac-
tion task:

4



• MeasEval4 (Harper et al., 2021) dataset con-
tains 110 articles from 10 different subject
areas.

• Grobid (GeneRation Of BIbliographic
Data)5 (Foppiano et al., 2019) dataset is
composed of 32 scientific publications and 3
patents, a total 35 documents, collected across
different domains and annotated for quantity
and unit extraction.

Table 1 reports the statistics of the datasets.

Dataset Train Valid Test Avg l

MeasEval 1,284 427 755 8.37
Grobid 5,669 - 1,285 8.68

Table 1: Number of sentences in each dataset with avg l
which denotes the average length of quantities

4.3 Evaluations
Our method, SEQE, is an extension of PLMs. For
this reason, we use base versions of the PLMs and
LISA (Strubell et al., 2018)6 as the baselines to
compare our model against. Conceptually, LISA
(also an ‘add-on’ to other PLMs) is the closest
method to SEQE. In LISA syntactic information
is injected into only a single attention head, where
each token is attending only to its syntactic par-
ent. We run experiments on both datasets, with all
models fine-tuned on training subsets. We use the
following PLMs in the experiments: BERT (De-
vlin et al., 2019), RoBERTa (Liu et al., 2019), and
LUKE (Yamada et al., 2020). We use two variants
of each PLM, where the ‘-base’ variant consists
of 12 layers, 12 attention heads, and 768 hidden
dimensions, while the ‘-large’ variant has 24 layers,
16 attention heads, and 1024 hidden dimensions.

For both experiments, in addition to the baseline
PLMs (baseline models), we also compare our re-
sults with state-of-the-art models: LIORI (Davletov
et al., 2021a) and Grobid (Foppiano et al., 2019).

Evaluation Metric As an evaluation metric, in
addition to the token-level macro F1 score, we also
used the macro F1 score from Seqeval (Nakayama,
2018), span-level evaluation metric, since we try
to solve quantity extraction problem as a sequence
labeling problem and the important label is only
quantity.

4https://github.com/harperco/MeasEval
5https://github.com/kermitt2/

grobid-quantities
6https://github.com/strubell/LISA

4.4 Experimental setup

We utilise Hugging Face7 library for the baseline
experiments which are fine-tuning PLMs. We fine-
tune the baseline BERT model using Optuna (Ak-
iba et al., 2019), a hyperparameter optimization
framework, and apply the same hyperparameters
for other PLMs (batch size of 32, max length of
128, the learning rate of 1e-5 and 10 epoch of train-
ing). For the proposed model experiments, we
extract dependency tree representations from the
texts utilising an external deep biaffine dependency
parser (Dozat and Manning, 2016)8 integrated into
the SpaCy library9 (Honnibal and Montani, 2017).
We use the English model en_core_web_sm of
SpaCy in the experiments. Since the nodes in the
dependency tree representation are words, in the
attention mechanism of SEQE we apply the same
masking value (that would have corresponded to
the full word) to the sub-word tokens produced by
specific tokenisers (WordPiece, byte-level BPE).
We finetune the syntax-enriched BERT model us-
ing Optuna and apply the same hyperparameters
for other syntax-enriched PLMs (distance thresh-
old of 3, batch size of 8, learning rate of 5e-5 and
5 epoch of training). We train all experiments on a
single NVIDIA Quadro RTX 5000 GPU.

We train each model five times with different
random seeds and report the mean and standard
deviation of the results to account for the training
variance of the models.

Statistical significance The statistical signifi-
cance of the differences in macro F1 score is evalu-
ated with an approximate randomization test (Chin-
chor, 1992) with 99, 999 iterations and significance
level α = 0.05 for each baseline PLM and its
syntax-enriched version (e.g., BERT → Syntax-
enriched BERT). For significance testing, we used
outputs yielding the 3rd-best results for each of the
models (so, a median from the 5 runs reported to
account for variance).

5 Results and Discussion

5.1 Main Results

Experimental results are shown in Table 2 and 3
for the base and large models, respectively. We
report the results on the test sets of MeasEval and

7https://huggingface.co/
8The parser achieves 95.7% UAS and 94.1% LAS on the

most popular English PTB dataset (Marcus et al., 1993).
9https://spacy.io/
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MeasEval Grobid
Models Params Macro F1 Seq F1 Macro F1 Seq F1
Base Models
BERT (Devlin et al., 2019) 110M 87.26±1.66 57.15±7.24 89.45±1.42 72.28± 6.45

+ LISA 89.45±1.15 68.41± 5.89 89.51±1.31 73.47± 6.18
+ SEQE (Ours) + 0.01M 92.38↑±1.42 74.17↑±6.45 93.45↑±1.54 78.36↑±6.58

SciBERT (Beltagy et al., 2019) 110M 88.78±1.43 60.41±4.86 90.32±1.25 74.57±5.14
+ LISA 90.18±1.52 67.11±3.52 89.47±1.51 76.25±4.18
+ SEQE (Ours) + 0.01M 92.32↑±1.30 73.98↑±2.36 83.38±1.26 79.22↑±3.14

RoBERTa (Liu et al., 2019) 125M 89.63±1.33 65.62±5.54 91.24±1.32 75.42±6.21
+ LISA 90.17±1.25 66.54±5.10 90.89±1.42 75.10±5.89
+ SEQE (Ours) + 0.01M 90.58↑±1.42 69.05↑±4.41 91.25±1.48 75.61±4.48

LUKE (Yamada et al., 2020) 253M 91.22±0.79 72.66±5.06 92.22±0.88 77.68± 4.02
+ LISA 90.23±1.11 73.56±4.99 91.17±1.05 77.15±4.45
+ SEQE (Ours) + 0.01M 90.89±1.02 74.57±5.03 91.77±1.11 79.55±5.18

Table 2: Base PLM results on quantity extraction datasets. ↑ means statistically significant improvement over the
corresponding baseline PLM. Reported results are averaged over 5 runs.

MeasEval Grobid
Models Params Macro F1 Seq F1 Macro F1 Seq F1
State-of-the-art Models
LIORI (Davletov et al., 2021b) - 90.85 75.13 92.46 76.19
Grobid (Foppiano et al., 2019) - 86.13 65.16 80.14 54.92
Large Models
BERT (Devlin et al., 2019) 340M 87.07±1.68 57.75±4.78 88.95±1.54 72.36±5.04

+ LISA 90.45±1.51 68.48±4.15 90.36±1.51 74.47±4.25
+ SEQE (Ours) + 0.02M 91.88↑±1.42 72.762↑±3.78 92.982↑±1.50 76.95↑±4.11

RoBERTa (Liu et al., 2019) 355M 91.74±0.39 77.01±3.33 93.57±1.32 78.63±4.15
+ LISA 91.18±0.56 76.43±3.14 94.01±1.17 78.44±4.16
+ SEQE (Ours) + 0.02M 92.49↑±0.78 77.75↑±2.85 94.28↑±0.82 78.52±3.03

LUKE (Yamada et al., 2020) 483M 91.16±0.40 76.22±0.71 93.55±0.52 77.87±1.18
+ LISA 90.89±0.51 76.48±0.69 93.10±0.71 78.15±1.11
+ SEQE (Ours) + 0.02M 91.14±0.67 77.89±0.73 93.48±0.72 79.83↑±1.21

Table 3: Large PLM results on quantity extraction datasets. ↑ means statistically significant improvement over the
corresponding baseline PLM. Reported results are averaged over 5 runs.

Grobid datasets. The results show that the pro-
posed SEQE method achieves consistent gains over
the baseline PLMs and LISA for the quantity ex-
traction task, especially for BERT. Even though
the baseline RoBERTa performs best among all
the baseline models, it shows that the quantity
extraction task benefits from injecting syntactic
information into the PLMs. The proposed ap-
proach outperforms LISA and among the exper-
iments of syntax-enriched PLMs, syntax-enriched
RoBERTa achieves the highest score and outper-
forms baseline RoBERTa with an increase of 0.75
and 0.71 in the Macro F1 score for the MeasE-
val and Grobid datasets, respectively. Syntactic
information does not result in a notable improve-
ment for LUKE, which is a word- and entity-
level model (pre-trained with a large amount of
entity-annotated corpus) using entity-aware atten-
tion mechanism. SEQE decreased the Macro

Target
MeasEval Grobid

Source MeasEval 92.49±0.78 90.45±1.45
Grobid 90.17±0.95 94.28±0.82

Table 4: Token-level Macro F1 scores of RoBERTa
(large) + SEQE for cross-domain experiments.

F1 score for LUKE-large. However, we obtain
the highest span-level Macro F1 with the syntax-
enriched LUKE-large, which mainly shows the
weakness of word-level models for this evaluation
metric. Importantly, syntax-enriched PLMs with
fewer parameters (BERT, SciBERT) outperform
their large baseline counterpart PLMs (Wang and
Wang, 2020; Yang et al., 2020), showing the impor-
tance of syntactic information to the small models.

5.2 Cross-Domain Results
Cross-domain NER focuses on transferring from
a source domain to a target domain. We run
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Predicted
B-Q I-Q O

True
B-Q 476 31 59
I-Q 43 889 78
O 24 42 8403

(a) MeasEval dataset

Predicted
B-Q I-Q O

True
B-Q 390 53 99
I-Q 12 912 49
O 40 123 7340

(b) Grobid dataset

Table 5: Confusion matrix for the syntax-enriched
RoBERTa (large) for quantity extraction task. (B-
Quantity (B-Q), I-Quantity (I-Q))

cross-domain experiments with syntax-enriched
RoBERTa (large) yielding the best token-level
Macro F1 scores on MeasEval and Grobid datasets.
Cross-domain experimental results are shown in
Table 4.

When we compare the within-domain and cross-
domain results, we observe a slight decrease for
both datasets. The macro F1 scores for the within-
domain experiments for MeasEval and Grobid are
92.49% (MeasEval → MeasEval)and 94.28% (Gro-
bid → Grobid), respectively, while for the cross-
domain experiments they are 90.17% (Grobid →
MeasEval) and 90.45% (MeasEval → Grobid). De-
spite the effectiveness decrease, the results are still
comparable to those of the baseline models.

5.3 Error Analysis

In Table 5, we show the confusion matrices for
the predictions of the model with the best results
(syntax-enriched RoBERTa) for the MeasEval (Ta-
ble 5a) and Grobid (Table 5b) datasets. Typically,
the model does not confuse the Quantity tags (B-
Quantity, I-Quantity), but instead makes errors in
deciding whether a token is a quantity or not. This
makes sense, since the number of O tags is higher
than the number of Quantity tags. We perform a
comprehensive analysis of the errors made by the
models to understand which quantity formats the
model performs well on, and which it performs
poorly on.

We categorise the prediction errors made by the
model by exploring the properties of individual
tokens for which the model made incorrect predic-
tions for each of the datasets. For MeasEval, of the
24 tags for which the model confused an O tag for
a B-Quantity, 7 are punctuation characters and 7

are numbers written as numeric or alphabetic, and
the others are modifiers for quantities that occur
frequently in the datasets, such as approximately,
low, etc. Out of the 42 tags where the model con-
fused an O tag for an I-Quantity, 10 are units, and
6 are numbers written as numeric or alphabetic.

For the Grobid dataset, of the 40 tags where the
model confused a O tag for a B-Quantity, 7 are
numbers written as numeric or alphabetic, and 10
are punctuations. Interestingly, 10 of the misla-
beled tokens are units, such as m, %. Out of the
123 tags where the model confused a O tag for an
I-Quantity, 16 are units, 24 are numbers written as
numeric or alphabetic and 33 are punctuations.

After analyzing all the errors made by the mod-
els, we found that the syntax-enriched model tends
to find longer quantity spans compared to the base-
line PLMs. The common errors made by both
models can be divided into 3 categories: (1) label-
ing modifier words as O (e.g., range, between), (2)
labeling numbers written as numeric or alphabetic
as B-Quantity, (3) labeling stop words in quantities
as O (e.g., a, the).

5.4 Discussion

Based on the results, we analyse the impact of the
syntax-enriched attention mechanism on the prob-
lem by visualising the model’s decision. For this
purpose, we used the transformers-interpret10, a
post-hoc explanation tool compatible with models
from the transformers package designed for the
sequence labeling problem. Tokens are assigned
an importance score indicating how their presence
contributes to the prediction of a particular posi-
tive token (Attribution Label) with the cumulative
importance scores (Attribution score) for that to-
ken. Tokens highlighted in green have a positive
contribution to the model’s decision, while tokens
highlighted in red have a negative contribution.

We randomly select a few sentences from the
test set and analyze the predictions of the best-
performing model (syntax-enriched RoBERTa-
large) and its baseline version (RoBERTa-large)11.
Figure 4 shows the visualisation of the models for
the sentence “In addition, the number of emerged
Striga plants for each plot was recorded at 67, 101
and 121 das." with the quantity “67, 101 and 121
das". While the baseline model correctly predicts

10https://github.com/cdpierse/
transformers-interpret

11Dependency tree representations of the sentences are
given in Figure 6.
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(a) RoBERTa-large

(b) Syntax-enriched RoBERTa-large

Figure 4: Visualisation of the sentence “In addition, the number of emerged Striga plants for each plot was recorded
at 67, 101 and 121 das."

(a) RoBERTa-large

(b) Syntax-enriched RoBERTa-large

Figure 5: Visualisation of the sentence “The colored letters indicate a comparatively high expression level of the
MHC-I allele, comprising >10% of cDNA sequence reads."

the quantity, lots of tokens have positive and neg-
ative effects on the prediction of token labels, es-
pecially some distant tokens (e.g., the word ‘addi-
tion’). In the syntax-enriched model, on the other
hand, the contributing tokens are closer together,
due to dependency relations extracted from the sen-
tence’s dependency tree and incorporated in the
attention mechanism. In particular, the syntax-
enriched model appears to base its decision on the
positive contribution of a predicate syntactically
close the quantity span (here, ‘recorded’).

We observe similar results in Figure 5 for the
sentence “The colored letters indicate a compar-
atively high expression level of the MHC-I allele,
comprising >10% of cDNA sequence reads." with

the quantity “>10%". Since numbers written as
numeric or alphabetic are usually placed at the be-
ginning of quantities, both models tend to label 10
as B-Quantity. Apart from this result, we see that
close tokens have a positive effect in predicting
token labels for the syntax-enriched model.

6 Conclusion

We introduce the SEQE model that integrates syn-
tactic information into the Transformer attention
mechanism to provide a complementary structure
for the quantity extraction modeled as a sequence
labeling problem. We demonstrate the effective-
ness of the proposed SEQE model, which uses
syntactic information, by comparing it to baseline
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PLMs on the quantity extraction task. We find
that the proposed method outperforms the baseline
PLMs and SOTA models and the syntax-enriched
RoBERTa achieves the best effectiveness among all
evaluated methods. We also find that syntactic in-
formation added at the attention-level of the PLMs
contributes to more accurate entity span extraction,
which is also very important for other (downstream)
subtasks of ME, as these other subtasks depend di-
rectly on the quality of quantity extraction. Finally,
the SEQE model is versatile in a sense that it can be
easily integrated into all tasks that use pre-trained
transformer models.

In future work, we will explore the perfor-
mance of the transformer models extended using
semantic representations such as AMR (Banarescu
et al., 2013), UMR (Van Gysel et al., 2021), and
UCCA (Abend and Rappoport, 2013).

Our work aims to explicitly extract quantity ex-
traction using linguistic knowledge as syntactic in-
formation integrated into the attention mechanism
of the PLMs encoder. We focus on autoencoding
models (BERT, RoBERTa, LUKE) that rely on the
encoder part of the original transformer. However,
autoregressive models (e.g., GPT (Radford et al.,
2018), GPT-2 (Radford et al., 2019)) and seq2seq
models (e.g., BART (Lewis et al., 2019), T5 (Raf-
fel et al., 2020)) are widely used in the literature
for the token classification problem. In addition,
non-autoregressive models (Gu et al., 2017) have
become popular due to their fast inference speed, as
they omit the sequential dependencies in inference.
We hope to extend our study on syntax-enriched
masking for quantity extraction to these models.

Finally, we will investigate the impact of our
approach on downstream subtasks of ME defined
in the MeasEval shared task (Harper et al., 2021).

Limitations

Even though our proposed model outperforms the
baselines, there are still limitations, mainly based
on the syntax-enriched mask integrated into PLMs.
We utilised dependency tree representations in the
syntax-enriched attention mechanism. Although
the labels of the dependency arcs give the syntax
type of the relation between the connected words,
we ignore the arc labels to keep the masking simple.
In addition, our model depends on the effectiveness
of the dependency parser model used ‘off-the-self’
in our method.

Ethical Statement

The datasets used in our experiments are publicly
available. Both these datasets are focused on pro-
cessing (publicly available) scientific literature,
thus constituting a low-risk setting.
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A Multilingual PLMs

We primarily use monolingual PLMs for our ex-
periments. However, syntax-enriched multilingual
PLMs are applied to various tasks. Therefore,
we perform experiments with multilingual PLMs:

XLM (Cao et al., 2021) and the multilingual ver-
sion of LUKE (Ri et al., 2022). The results are
given in Table 6. We observe that the improvements
of quantity extraction with multilingual PLMs are
relatively smaller than with monolingual PLMs.

B Syntactic Representation

Figure 6 shows the dependency tree visualisation
of sentences given in Section 5.4.
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MeasEval Grobid
Base-size Baseline Models
XLM 125M 88.58±0.82 61.34±5.18 89.57±0.97 73.18±5.89
mLUKE 585M 88.98±0.72 62.59±3.21 88.75±0.75 73.61±3.18
Large-size Baseline Models
XLM 355M 89.37±0.79 67.22±2.96 90.20±0.75 75.69± 3.47
mLUKE 868M 88.83±0.66 63.81±3.68 87.94±0.44 74.15±3.08
Syntax-Enriched Base-size Models
XLM 125M + 0.01M 89.45±1.15 68.32±4.25 90.03±0.98 74.66±4.67
MLUKE 585M + 0.01M 87.55±0.82 62.05±2.36 87.16±0.78 73.18 ±1.94
Syntax-Enriched Large-size Models
XLM 355M + 0.02M 90.22±0.56 76.21±0.92 91.36±0.61 78.35±1.45
MLUKE 868M + 0.02M 88.62±0.65 64.56±2.45 88.03±0.66 74.31±2.51

Table 6: Multilingual PLM results on quantity extraction datasets. Reported results are averaged over 5 runs.

(a) In addition, the number of emerged Striga plants for each plot was recorded at 67, 101 and 121 das.

(b) The colored letters indicate a comparatively high expression level of the MHC-I allele, comprising >10% of cDNA sequence
reads.

Figure 6: Dependency tree visualisation of sentences given in Section 5.4
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Abstract

Here we present the training and evaluation of
NanoNER, a Named Entity Recognition (NER)
model for Nanobiology. NER consists in the
identification of specific entities in spans of
unstructured texts and is often a primary task
in Natural Language Processing (NLP) and In-
formation Extraction. The aim of our model
is to recognise entities previously identified
by domain experts as constituting the essen-
tial knowledge of the domain. Relying on on-
tologies, which provide us with a domain vo-
cabulary and taxonomy, we implemented an
iterative process enabling experts to determine
the entities relevant to the domain at hand. We
then delve into the potential of distant super-
vision learning in NER, supporting how this
method can increase the quantity of annotated
data with minimal additional manpower. On
our full corpus of 728 full-text nanobiology ar-
ticles, containing more than 120k entity occur-
rences, NanoNER obtained a F1-score of 0.98
on the recognition of previously known entities.
Our model also demonstrated its ability to dis-
cover new entities in the text, with precision
scores ranging from 0.77 to 0.81. Ablation ex-
periments further confirmed this and allowed
us to assess the dependency of our approach on
the external resources. It highlighted the depen-
dency of the approach to the resource, while
also confirming its ability to rediscover up to
30% of the ablated terms. This paper details the
methodology employed, experimental design,
and key findings, providing valuable insights
and directions for future related researches on
NER in specialized domain. Furthermore, since
our approach require minimal man-power, we
believe that it can be generalized to other spe-
cialized fields.

1 Introduction

As the volume of the scientific literature increases,
the demand for NLP models able to deal with do-
main vocabulary and specific knowledge is becom-

ing increasingly apparent. The NanoBubbles 1

project, from which the work presented here origi-
nates, aims at studying how, when and why science
fails to correct itself. It focuses on the nanobiology
domain and combines approaches from the natural
sciences, natural language processing and social
sciences. The field of nanobiology being charac-
terized by both its multidisciplinarity and its high
degree of specialization is a perfect example of the
need for specialized tools. Thus, we must leverage
methods from Natural Language Processing (NLP)
to assist in the extraction of important information
from a large number of articles. The main task of
this paper is to train a Named Entity Recognition
(NER) model in the field of nanobiology.

The primary task of Named Entity Recogni-
tion is to identify and classify specific entities (i.e.
named entities) in a text. Compared to other fields,
Biomedical NER (BMNER) is a particularly chal-
lenging problem, mainly due to the high cost of
obtaining quality annotated data and the complex-
ity of domain terminology. A famous example of a
model able to perform BMNER is bioBERT (Lee
et al., 2020), which is pre-trained on a large-scale
corpus of biomedical text. It performs well on a
standard set of biomedical benchmarks in several
downstream tasks (e.g., NER, Relations Extraction,
Q&A). To our knowledge, NER in the nanobiology
domain remains an uncharted territory, as exist-
ing BMNER models are not trained to recognize
entities of interest in this specific field.

Training an efficient NER model requires a large
amount of annotated data, which is not easy to
come by in specialized domains as the manual work
it requires need to be carried out by fields experts.
In our work for NER in the nanobiology field, we
use distant supervision to alleviate for the lack of
annotated data and thus allow the creation of a
corpus of articles from a specialized domain large
enough to train a NER model. Using BioBERT

1https://nanobubbles.hypotheses.org/
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(Lee et al., 2020) as base model, this approach
requires minimal human work. We believe that the
approach we implemented, and describe here, is
adapted to other scientific domain.

First, we harnessed existing nanobiology ontolo-
gies (i.e., the Nanoparticle ontology (Thomas et al.,
2011) and eNanoMapper (Hastings et al., 2015))
for their concept hierarchy and vocabulary. Then,
an iterative process took place with a team of do-
main experts, who determined the essential labels
for our NER model and curated the vocabulary. A
round of vocabulary extension, with expert cura-
tion, took place before the automatic annotation of
the corpus. Ablation experiments were also imple-
mented to measure the influence of the vocabulary
coverage in our distant supervision setting.

In summary, the main contributions of this paper
are as follows:

1. We have implemented a method to create an-
notated data for NER. It consists in an iterative
process, involving ontology and corpus analy-
sis followed by use of expert knowledge and
their validation. This lead us to identify five
labels, with vocabularies covering 1438 terms,
that are highly relevant to nanobiology.

2. We created NanoNER, a NER model for
nanobiology using a distant supervision learn-
ing approach and trained on automatically an-
notated entities in a corpus of 728 unlabelled
full-text nanobiology articles. Detailed abla-
tion experiments were conducted to evaluate
the influence of the vocabulary coverage.

3. Finally, ablation experiments allowed us to es-
timate the dependency of our model to the an-
notation resource. We can effectively measure
how well NanoNER is capable to generalize,
i.e. its ability to (re)find entities not present
in the training set, as well as the essential and
minimal terms needed to obtain satisfactory
results.

2 Related work

Existing BMNER solutions encompass early NER
methods, such as dictionary matching or rule-based
approaches, as well as supervised machine learn-
ing methods such as Markov models (Ponomareva
et al., 2007a). Conditional Random Fields (CRFs)
were then employed to perform BMNER (Pono-
mareva et al., 2007b; Friedrich et al., 2006). Unlike

Markov models, CRFs can consider the charac-
teristics of the entire input sequence, not just the
current state. And Support Vector Machine (SVM)
can be used in binary classification problems for
NER tasks, such as determining whether a word is
a named entity of a particular type (Ju et al., 2011).

Recently, deep learning approaches using large
amounts of labeled data, such as models built on
BioBERT (Lee et al., 2020), have achieved state-
of-the-art results on BMNER. For instance, on the
jnlpba (Huang et al., 2020) dataset, the KeBioLM
model (Yuan et al., 2021) obtained a F1 score of
0.82 on recognizing entities relating to proteins,
genes and cells. In the bc5cdr (Li et al., 2016)
dataset, the BINDER (Zhang et al., 2022) model
using a contrastive learning approach, achieved
a F1 score of 0.91 on chemical and disease enti-
ties. However, BMNER presents specific difficul-
ties. For instance, Dong et al. (2016) conducted
an extensive study on electronic medical records
and identified that such technical texts often con-
tain a substantial amount of specialized terminol-
ogy and knowledge, and frequently present issues
such as spelling errors, abbreviations, and idiosyn-
cratic terms, all of which add to the difficulty of the
NER task. In this difficult setting, they proposed
a method based on CNN (Convolutional Neural
Networks) and Word2Vec for performing BMNER
and managed to achieve a F1 score of 0.73.

To address the scarcity of annotated data in
deep learning models, some weak supervision and
distant supervision solutions have been proposed.
Mintz et al. (2009) were among the pioneers of dis-
tant supervision learning, introducing this method
in information and relation extraction tasks. Their
goal was to extract relations between entities from
a large amount of unlabeled text, using existing
knowledge bases as distant supervision signals.
Distant supervision was initially widely applied
to relation extraction tasks and later extensively
used in NER tasks. Distant supervision methods
for NER have been validated in previous studies.
Shang et al. (2018) revised the LSTM-CRF NER
model of Lample et al. (2016) and utilized the
MeSH database for chemical and disease entity
research. Since the automatic annotation of a cor-
pus tend to introduce noise in the training data,
some methods have been proposed to reduce this
effect (Meng et al., 2021), such as using early stop-
ping or introducing the concept of pseudo-labels
(Liang et al., 2020). Early stopping prevent over-
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fitting the model on the training data and fosters
the learning of important features of the corpus.
Pseudo-labeling data expand the training set by
generating new labeled data that can then be used
alongside existing datasets.

BMNER using ontologies and distant supervi-
sion have already been performed in the biomedi-
cal domain (Fries et al., 2017; Wang et al., 2021)
and this type of approach could be generalized to
any domain for which a semantic and lexical re-
source exists. These works used different technics
to minimize the risk of noise propagation, e.g. filter-
ing candidate annotations through heuristics based
on part-of-speech analysis (Fries et al., 2017) or
disambiguating ambiguous entities based on other
entities present in the same context (Wang et al.,
2021). In our work, we rely on domain experts at
crucial steps: (1) determining the labels and then
(2) filtering and validating the vocabulary of our
annotation resource.

To the best of our knowledge, no one has yet pro-
posed a BMNER model that meets the information
mining needs of the nanobiology field. We thus
aim at training a NER model, using minimal man-
power, but which still meets experts requirements
regarding the entities of interest of the domain.

3 Data preparation

Here we describe the essential resources for our
work, the corpus and ontologies used, the expert
work on selecting labels relevant to the domain at
hand as well as the vocabulary associated, and the
automatic annotation on the scientific articles. All
codes necessary to replicate this study are available
online2.

3.1 Corpus

The corpus used in this study comprises 728 re-
search articles focused on the field of nanobiology.
The vast majority of these articles are written in
English. In total, the corpus contains 158,283 sen-
tences and 3,762,791 tokens. On average, each
paper in the corpus consists of 217 sentences, and
each sentence contains approximately 24 tokens.
This extensive dataset provides a rich foundation
for in-depth analysis and research in the field of
nanobiology. The articles were first obtained in
PDF format and the abstract and full text of each

2https://gricad-gitlab.
univ-grenoble-alpes.fr/nanobubbles/
nano-ner-wiesp-2023.git

article was extracted using Grobid (Lopez, 2008-
2023). Parts of the documents that are not consid-
ered as the core of the articles were excluded (e.g.
References, Acknowledgment, Appendix).

3.2 Ontology
As resources, we used the NanoParticle Ontol-
ogy for cancer nanotechnology research (NPO)
(Thomas et al., 2011) and eNanoMapper (ENM)
(Hastings et al., 2015), which are the two main on-
tology in the field of nanobiology. As described in
the ENM official documentation, ENM is an auto-
matic extension of NPO and reuses several other
ontologies including NPO, CHEMINF (Hastings
et al., 2011), CHEBI (Degtyarenko et al., 2007)
and ENVO (Buttigieg et al., 2013). The NPO pos-
sesses 1904 classes and 81 properties, while ENM
contains over 25k classes, 697 individuals and 55
properties (August 2023). Since ENM is built auto-
matically we used it as a secondary source to NPO,
in order to minimize the risk of noise propagation.
The ontologies were used in CSV format, where
each concept in the ontology had a unique key, def-
inition, synonyms, and parent key. These resources
will be used for their subsumption relations and
vocabularies, providing us with a taxonomy and
lexical database.

3.3 Labels and vocabulary
To determine the labels our model will be trained
to recognize, and their vocabulary, we used an iter-
ative process of reducing the ontologies, expanding
the obtained vocabulary and having every steps val-
idated by domain experts. Because of the large
number of concepts in the NPO and ENM ontolo-
gies, the difficulty of finding a focus to start with
and the fact that our aim is to create an automat-
ically labeled corpus, we first retained only the
concepts that presented at least one occurrence in
our corpus (i.e. ≈ 30% of NPO’s and ≈ 10% of
ENM’s). Concepts that have never appeared in the
corpus were discarded, and subsumption relations
within the ontology were reconstructed to obtain a
reduced ontology.

Using these reduced ontologies, three domain
experts (cf. Acknowledgements) examined their
structures and the remaining concepts. To-
gether, they identified five labels as being the
core concepts of interest to the field of nanobi-
ology, namely Nanoparticle, Property,
Material, Event and Technology. Table
1 presents a short description of each label, along
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with the core concepts combined under them (the
number of their respective sub-concepts before ex-
pert selection is indicated between parenthesis) and
a vocabulary extract in the last column.

The concepts corresponding to each label are
taken as the root concept of ontology sub-trees. We
then amalgamated all the terms under the root con-
cepts with all of the terms of all of its respective
sub-concepts to built the labels vocabulary. In any
conflict between the NPO and ENM structure, NPO
was prefered. The labels were subsequently sub-
jected to a first detailed verification by the domain
experts, who selected sub-concepts with relevant
vocabulary only, which drastically downsized the
number (). In addition to verifying each label’s
vocabulary, they encountered six specific cases of
terms under Material that they thought should
be moved under Nanoparticle: buckyball, car-
bon dot, surface group, dendrimer, liposome and
fullerene.

Table 2 presents the characteristics of the labels
vocabulary. Terms designates the vocabulary size
for the label based on the ontologies lexicon. Vo-
cabulary indicates the size of the extended vocabu-
lary based on terminological variations retrieval (cf.
below), which includes the original terms. Occur-
rences gives the raw frequency of all label’s terms
in our corpus. Also, since this was obtained by
reducing ontologies, the Depth and Width columns
give an insight of the shape of each sub-tree.

After the expert determined the labels and cor-
responding terms, we recorded the variants of all
the terms using FASTR (Jacquemin et al., 1997).
Given a list of terms and a corpus of texts, FASTR
is able to extract the terminological variations using
solely lexical, syntactical and meta-grammatical
rules. This tool is also able to account for vari-
ations in word order and part-of-speech changes.
It can deals with multi-word terms and is able to
recognise variations in an expression (e.g. ’molec-
ular function’ → ’functional roles of molecular’).
Although the results of FASTR seemed rather ac-
curate at first, a second round of expert validation
of the vocabulary took place. Out of 2,211 unique
variations, experts reduced the number to 1,438
terms (i.e. 65%) and thereby preserved the quality
of the training data.

3.4 Automatic corpus annotation

We annotated the data for our distant supervision
approach using Prodigy (Montani and team, 2023)

under a research licence. The annotation follows
the CoNLL2003 (Sang and Meulder, 2003) stan-
dard, which uses the BIO annotation format. The
Occurrences column in Table 2 displays the number
of annotation under each label in our corpus.

4 Experimental methods

The primary objective of our experiments is to test
whether the model possesses good generalization
capabilities, precision, and stability. Therefore, we
designed three distinct ablation studies to evalu-
ate how dependent our approach is to the labels
vocabulary.

4.1 Exploring Existing Models

To identify every entity in the articles, we first ex-
amined the results of the SciBERT model (Beltagy
et al., 2019). SciBERT is a widely pre-trained
model for scientific articles, aiming at improving
the expressivity of the model and save training time
for downstream tasks. We manually annotated 646
"naive" entities (i.e. "naive" meaning only distin-
guishing whether a span is an entity or not, not
knowing which label the entity belongs to) related
to the field of nanobiology in one article (Ma et al.,
2016), and then tried to use SciBERT for "naive"
entity recognition on plain text.

The result is that SciBERT can identify almost
all entities in the article. Out of 646 entities related
to the nanobiology field it can identify 638, which
suggest a high recall capability (i.e. ≈ 0.99 on the
article tested). However, SciBERT identifies a large
number of entities that would be false positives in
the field of nanobiology. SciBERT identified a
total of 2,976 entities, which gives 2,322 false pos-
itives that need to be filtered out suggesting a low
precision value (i.e. ≈ 0.21). Examples of these
false positives are : nanoscience, construction, con-
vergence, reduce, Hayakawa A way to eliminated
these false positives would be to match them with
an ontology. But this approach would lack several
essential aspects: classification of entities into la-
bels, possible confusion between concepts when
trying to do so (e.g. in the ontology, dendrimer is
originally present under the concepts Material
and Nanoparticle), coverage of the ontology
vocabulary and so on. Then, it does not eliminate
the need for ontology reduction and expert involve-
ment.

We also experimented with some existing mod-
els for BMNER in the Scispacy and Stanza li-
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Label Description Core Concepts (#sub-
concepts)

Vocabulary extract

Nanoparticle are physical structures,
usually between 1 and
100nm in two or three
dimensions, that present
size related properties

Nanoparticle (68), Fiat
Material (77)

nanocapsule, fluorescent
carbon nanoparticles,
carbon dot, nanowire

Property are physical and chemi-
cal functions that can be
described using measure-
ment

Realizable Entity (89),
Application (102)

amphiphilic, hydrophilic,
antioxidant, fluorescent

Material are the atoms and chem-
ical compounds consti-
tuting nanoparticles and
other studied objects

Chemical Entity (663),
Material Entity (320)

thiol, gold, primary
amine, carbohydrate

Event describes what is happen-
ing at a cellular level

Process (231) mitosis, transcription,
cell death, DNA modifi-
cation

Technique for preparing nanopar-
ticles, measuring their
characteristics and using
them

Technique (63), Assay
(171), Bioassay (37), In-
strument (31), Applica-
tion (102)

fluorescence spec-
troscopy, atomic force
microscopy, gel elec-
trophoresis

Table 1: Description and examples of the chosen labels

Label Terms Vocabulary Occurrences Depth Width
Nanoparticle 71 196 16,341 4 19
Property 105 345 19,849 7 24
Material 241 515 74,688 11 36
Event 56 210 3,219 5 9
Technique 65 172 7,104 7 19
Total 538 1,438 121,201

Table 2: Labels vocabulary sizes

braries, but most of these are trained on specific
corpora and entities, and perform poorly on NER
tasks in the nanobiology field.

4.2 Ablation experiment design

In order to assess the dependency of the approach
to the resource, as well as model generalization
capabilities, we designed a set of ablation experi-
ments. As detailed in Table 2, our five labels cover
a list of 538 terms. Each term has varying numbers
of variants, ranging from 1 to over 10, resulting
in a total of 1438 different terms. In our ablation
experiments, the terms were first randomly shuffled
in each labels to minimize the risk of latent factors
from affecting the experimental results, such as the
terms being arranged in a specific pattern. Then,

the label’s vocabularies are divided into five equal
parts, noted as folds A, B, C, D and E. Ablation
of 33% of the terms were also implemented with
folds F, G and H.

To create the training and test set for our ablation
experiments, we selected the sentences based on
the presence or absence of ablated entities. This
was done in order to ensure that the model would
not confuse excluded entities for negative examples
during the training, and to later test its capabili-
ties to retrieve entities not encountered before. As
shown in Table 3, this resulted in training and test
sets of various sizes, some being three time larger
than others (e.g. test sets in folds D and C). For
instance, the training set in Fold A is composed of
126.834 sentences not containing a single ablated
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Fold Abl.% Training set Test set
A 20% 126,834 21,427
B 20% 130,099 18,162
C 20% 136,708 11,553
D 20% 113,875 34,386
E 20% 129,580 18,681
F 33% 109,259 39,002
G 33% 117,392 30,869
H 33% 120,103 28,158

Table 3: Number of sentences in each Fold

term, the test set is then made of the remaining
sentences. Thus, ablation experiments ensure that
part of the test set consist in entities on which the
model has not been trained. The approximate sen-
tence ratio is 6:1 for 20% ablation and 4:1 for 33%
ablation.

5 Results and Analysis

In this section, we first present the results of train-
ing the model on the full dataset, which perfor-
mances aligned with our expectations. Then, we
detail the two random ablation experiments we de-
signed, reducing the data by 20% and 33% respec-
tively. We noticed a significant fluctuation in the
results of these experiments. Therefore, we specif-
ically analyzed the 20% ablation experiment and
based on these analyses, we proposed the hypothe-
sis that including or excluding specific terms under
our labels might have a significant impact on the
precision and recall scores. Following this, we
designed a new frequency-based 10% ablation ex-
periment to explore this hypothesis. The results
from this new experiment successfully validated
our conjectures.

5.1 Training on the whole dataset
Initially, we trained the model on the complete
dataset, carrying out a training with 5 and 20
epochs respectively. Given the consistency of the
training and validation datasets, the nature of this
experiment is closer to a straightforward word-
matching task. Results are displayed in Table 4.
We found that the F1 score of the model reached a
value 0.985, which is consistent with our expecta-
tions.

Subsequently, we performed a deep analysis of
the model’s generalization ability. Our assumption
was that it would be impossible to achieve 100%
coverage of terms in the corpus, so we had the

model re-annotate the corpus. Table 4 thus also
presents the number of unique new entities (i.e. ig-
noring the number of occurrences) identified by
NanoNER, the number of correctly labeled entities
and the associated precision. Not cosidering the
number of occurrences for these newly retrieved
entities allows for a better estimation of the model
generalization capabilities. NanoNER achieves an
precision value on new entities roughly around 0.8.
Additionally, we found that as the training epochs
increased, the precision value on the newly found
entities improved, but the number of new entities
recognized decreased.This indicates that the num-
ber of training epochs can be chosen according to
the intended use, giving priority to recall or preci-
sion values on never-before-encountered entities.

5.2 20% Ablation experiments
The primary objective of our ablation study is to
further test the model generalization capabilities
and dependency to the resource. We employed
early stopping for training, setting the number of
epochs to 1 and the batch size to 32. The training
results are presented in Table 5. As we can see,
the precision fluctuates around 0.79 and the gap be-
tween the highest and lowest precision values can
be as high as 0.14. The impact of the vocabulary
ablation is even more visible on the recall: with an
average score of 0.54, it has degraded considerably
compared to the initial training. This tend to indi-
cates that the absence or presence of specific terms
highly influence the quality of the trained model.
To address this, we conducted further exploration
in Section 5.4.1.

5.3 33% Ablation experiments
Next, we conducted experiments with a 33% ab-
lation of the terms. The results in Table 6 are as
expected: the precision value remained around 0.8,
but the recall rate dropped even further. This is
due to the higher number of terms excluded in 33%
ablation experiments compared to the 20% ones.

5.4 Ablation experiments analyse
Firstly, we conducted a generalization analysis on
the ablation experiments from folds A to E. We em-
ployed the same method as in the full data analysis:
We initially listed all the deleted entities, and then
had predictions made by the model on the entire
corpus. Subsequently, we matched all the entities
predicted by the model with the deleted entities.
As depicted in Table 7, the model could stably
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Epochs Precision Recall F1 Score New Entities Correct Labeling Precision
5.0 0.981 0.989 0.985 485 375 0.773
20.0 0.982 0.989 0.985 249 202 0.811

Table 4: Models trained using the entire dataset

Fold Precision Recall F1 Score
A 0.796 0.544 0.646
B 0.826 0.575 0.678
C 0.853 0.593 0.699
D 0.756 0.424 0.544
E 0.711 0.549 0.620

Average 0.788 0.537 0.637

Table 5: Models trained on 20% ablation folds

Fold Precision Recall F1 Score
F 0.752 0.332 0.461
G 0.868 0.411 0.557
H 0.847 0.460 0.596

Average 0.822 0.401 0.538

Table 6: Models trained on 33% ablation folds

rediscover up to 30% of the deleted entities. Con-
sidering that these results are not calculated based
on occurrence rates, and it’s quite challenging to
discover the relationships between many obscure
entities through deep learning, we believe these
results are within our expectations.

Fold Retrieved Ablated Recall
A 66 232 0.28
B 89 353 0.25
C 72 303 0.24
D 77 249 0.31
E 77 272 0.28

Average 76.2 281.8 0.27

Table 7: Refound

Next, we sought to analyze the variability be-
tween the folds. We hypothesize that certain la-
bels are excessively difficult, thereby affecting the
overall performance of the task, we then evaluated
each label separately. Table 8 displays the aver-
age recall and precision values of the labels over
the different folds (detailled evaluation is available
in Appendix A. We found that Nanoparticle
and Event have the most important variations
in recall, while the variations in precision mostly

concern Nanoparticle and Technique Most
of the average recall values over different labels
are close to 0.54, but differences in average pre-
cision is more important when comparing the dif-
ferent labels. Material and Property displays
scores over 0.90, Nanoparticle is around 0.83,
but Event and Technique have significantly
lower precision values (0.74 and 0.65 respectively).
These variations are analyzed as a result of the
specific characteristics of the labels vocabularies.
E.g. Event and Technique contains terms from
the scientific language that are not specific to the
nanobiology field, and thus carry a higher risk of
confusion.

Label
Recall Precision

avg. var. avg. var.
Nanoparticle 0.57 0.23 0.83 0.13
Material 0.55 0.13 0.92 0.06
Event 0.53 0.22 0.75 0.10
Property 0.48 0.10 0.91 0.09
Technique 0.56 0.16 0.65 0.15

Table 8: Average performances on each label

We also observed specific differences between
the different folds for specific labels. E.g. the
recall for Nanoparticle is very high in fold A
(i.e. 0.82), but significantly lower in fold E (i.e.
O.19). This suggests that certain words are highly
important for specific labels. In fact, in fold E, the
term nanoparticle was removed, which is not only
a high-frequency term throughout the entire corpus,
but also an essential word involved in different
terms (e.g. nanoparticle, gold nanoparticle).

We believe that these high-frequency terms may
have a great impact on the training of the model.
Therefore, removing these words during training
might lead to a significant decline in the perfor-
mance of the model. To explore this hypothesis,
we decided to conduct a third ablation experiment
based on terms of frequency.

5.4.1 10% Ablation experiments
We then sorted the terms according to their fre-
quency in the corpus and conducted four more
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Training set Precision Recall F1 Score Corpus size
remove top 10% 0.599 0.279 0.381 21.2%
remove top 10% + mft∗ 0.668 0.371 0.430 51.0%
remove middle 10% 0.802 0.683 0.738 99.0%
top 10% only 0.763 0.413 0.536 78.8%

∗mft: most frequent term in each label

Table 9: Models trained on 10% ablation

rounds of ablation, as shown in Table 9: in each
label we tried removing 10% of the most frequent
terms (with one experiment reintroducing the first
term in each label), removing the 10% in the mid-
dle of the terms frequency and finally retaining only
the 10% most frequent terms in each label. This
approach limits the corpus exploitable as training
and test sets, reflecting the distribution of the terms
throughout the corpus.

Firstly, it appears that the frequency of the terms
is a good indicator of the model dependency to-
wards the annotation resource. Indeed, precision
and recall values are impacted proportionally to the
rank of the terms removed. Comparing the first and
second rows also indicates that certain terms (i.e.
the most frequent terms in each label) significantly
impact the model’s performance. These terms may
play a critical role in the classification task, or they
could provide substantial contextual information,
helping the model understand other related terms.
Regarding the third row’s ablation experiment, al-
though most of the corpus (99%) was kept to train
the model, the F1 score is far lower than 0.985
when trained with the full data. This suggests that
even terms with lower frequencies still significantly
impact the model’s performance. These less fre-
quent terms might carry specific information cru-
cial for the model to understand and classify the
text. The fourth row’s ablation experiment result in-
dicates that retaining only the most common terms
might lead the model to overly focus on these terms,
overlooking other terms that may carry important
information. This could be because these common
terms contain a lot of generic information but lack
some specific, category-targeted information.

6 Error analysis and improvement
approaches

6.1 Sentence selection during ablation
experiments

In our ablation experiments, we sometimes en-
counter a scenario where a sentence contains an

ablated term and an other one that is not, and thus
we would like to remove only one of them. In
our experiments, we chose to exclude such cases
to avoid having our model confuse ablated terms
for negative examples. But other strategies could
be adopted to tackle this, such as the masking or
replacement of tokens.

6.2 Imbalanced dataset

As observed during the ablation experiment, our
corpus is highly imbalanced. Some terms and la-
bels appear more frequently than others. Detailed
evaluations of individual labels in ablation experi-
ments are given in Appendix A. This discrepancy
might lead the model to over-learn from these high-
frequency terms, thereby overlooking the impor-
tance of less frequent terms. During future opti-
mization, this problem could be tackled by using
techniques such as oversampling or undersampling
to balance the number of samples across different
categories. In a study on NER using Wikipedia,
(Al-Rfou et al., 2015) adopted an approach that in-
volves constructing a subset of the training corpus.
This strategy ensures that the conditional distribu-
tion of specific entity classes remains unaltered
when they are positive examples, thereby signifi-
cantly enhancing the model’s performance across
multiple languages.

6.3 Vocabulary coverage in distant
supervision

Our training and evaluation assume that the ground
truth annotations are accurate, which may not be
the case in a distant supervision framework. Thus
there may be cases where the model is retrieving
entities under the correct label, but that are consid-
ered false positives in our automatically annotated
corpus. We tried to reduce this effect by employing
FASTR (Jacquemin et al., 1997) to improve the
coverage of our resource, but this required experts
to filter out FASTR false positives. Also, their is
some known variations that FASTR is not able to
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retrieve (e.g. ’iron oxide nanoparticle’ and ’sili-
con dot’ are in Nanoparticle vocabulary, but
their respective variations ’iron nanoparticle’ and

’silicon dot’ were not recognized).
One solution would be to use a method known

as knowledge distillation, which incrementally im-
proves the model’s performance through iterations,
a training method used in the previously mentioned
BOND (Liang et al., 2020) paper. By using a
teacher model to generate pseudo-labels for train-
ing the student model, the training effectiveness of
the model is improved through repeated iterations.
Another solution is to manually annotate a suffi-
cient portion of high-quality data and then use it as
validation set for the model.

7 Conclusion

In this work, we have introduced NanoNER, a
tool for Named Entity Recognition in the field of
nanobiology. We designed an iterative process to
determine the model labels and vocabulary using
ontologies, domain experts and retrieving termi-
nological variations. This resulted in five labels,
covering 1,438 terms, that allow for the automatic
annotation of our corpus in a distant supervision
approach. Experiment analyses have demonstrated
that our model can effectively identify entities of
interest, both previously seen and new ones, in
the field of nanobiology. Given the complexity
and abundance of technical terms in the field, our
method shows promising applications in nanobiol-
ogy.

We believe that this approach can be applied as
is on other scientific fields, as it require only an
ontology (or taxonomy) resource and minimum
man-power. This allow for the efficient training of
NER models useful in downstream NLP tasks.

Ablation experiments showed a significant de-
pendence of the model on the vocabulary used. In
future work, we could attempt data augmentation
on the dataset to reduce its imbalance and enhance
the model’s training performance. In addition, it is
possible to use knowledge distillation for iterative
model updates, which can reduce the false posi-
tive misjudgment during validation and improve
the model’s generalization capabilities.
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A Detailed ablation evaluation

Fold Label Positive Total Recall Positive Total Precision
A nanoparticle 2,557 3,108 0.822 4,645 4,821 0.963

material 8,952 16,022 0.557 15,433 15,821 0.975
event 233 342 0.68 398 444 0.896

property 2,999 8,287 0.363 4,033 4,241 0.951
technique 591 1,036 0.57 1,346 2,053 0.656

B nanoparticle 1,466 3,309 0.443 2,854 4,082 0.699
material 8,959 14,566 0.615 14,961 15,377 0.973

event 203 419 0.484 341 428 0.797
property 2,531 4,122 0.613 3,964 4,101 0.967
technique 685 2,033 0.336 1,129 1,665 0.678

C nanoparticle 1,346 1,900 0.708 2,475 2,590 0.956
material 6,315 9,477 0.665 10,930 11,976 0.913

event 409 1,095 0.373 554 843 0.657
property 1,385 3,410 0.406 2,229 2,295 0.971
technique 297 574 0.517 958 1,240 0.773

D nanoparticle 2,371 3,364 0.705 4,369 4,934 0.885
material 8,876 29,268 0.301 12,920 14,016 0.922

event 871 996 0.874 1,362 2,236 0.609
property 3,329 7,345 0.452 4,855 6,563 0.740
technique 1,156 1,361 0.849 2,784 3,547 0.785

E nanoparticle 1308 6,826 0.192 2,652 4,064 0.653
material 8,237 13,339 0.617 12,670 15,670 0.809

event 249 996 0.251 366 477 0.767
property 1,749 3,056 0.573 2,921 3,251 0.898
technique 492 935 0.525 1,160 3,132 0.370

Table 10: Ablation evaluation on individual labels
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Abstract

In this paper, we address the task of extracting
semantic relations between entities in scientific
articles in Russian, with a focus on scientific
terms as entities. We present a dataset that
includes annotated abstracts of scientific arti-
cles in Russian. This dataset was used to train
and test models and develop an algorithm for
the automatic extraction of semantic relations.
We conducted experiments and compared one
zero-shot and one few-shot approach for rela-
tion extraction: one based on the perplexity
score and the other based on the use of pro-
totype vectors of relations. Our results show
that both methods can achieve reasonable per-
formance, demonstrating the potential of zero-
shot and few-shot approaches for relation ex-
traction in scientific texts in Russian. The de-
veloped tool and annotated dataset are publicly
available and could be valuable resources for
other researchers 1.

1 Introduction

At the present time, the proliferation of electronic
scientific publications has led to an increasing need
for extracting various types of semantic informa-
tion from scientific texts. One of the types of such
information is semantic relations. By extracting
these relations, machines can better understand the
meaning of a text, and this can have a wide range of
practical applications. For instance, relation extrac-
tion can be used in search and question-answering
systems, as well as in ontology development and
text classification.
However, currently, this problem is still diffi-

cult for any domain in any language. There are
several factors that contribute to the difficulty of
this task such as high variability in terms of syn-
tax, grammar, and vocabulary and ambiguity of
meanings in the texts. What’s more, there is a

1https://github.com/iis-research-
team/terminator/tree/main/relation_extractor

problem of lack of labeled data, especially for the
Russian language. Even though, there are some
datasets with annotated relations such as (Zhang
et al., 2017; Dunietz and Gillick, 2014; Li et al.,
2016) in multi-domains and biomedical domain, it
is still hard to find some publicly available datasets
such as SciERC (Luan et al., 2018) for scientific
fields other than biomedical, and in languages other
than English.
Due to the problem of lack of data we decided

to concentrate on some zero-shot and few-shot
methods. Zero-shot relation extraction is a type of
relation extraction that allows a model to identify
and extract the types of relations that it has not
been specifically trained on. In other words, the
model can perform relation extraction in a "zero-
shot" manner without any direct supervision for
the relation types in question. Few-shot relation
extraction assumes that the model is trained on
a small set of labeled data. The purpose of this
method is to allow the model to generalize to the
new tasks based on a few examples.
Thus, we make the following contributions:

• Provide a new dataset for relation extraction
tasks for Russian scientific texts.

• Compare one zero-shot and one few-shot ap-
proach for relation extraction (based on per-
plexity score and with the use of prototype
vectors of relations).

2 Related Work
Relation extraction (RE) is one of the main tasks
in the field of natural language processing (NLP).
With the introduction of large language models
(Devlin et al., 2019; Liu et al., 2019; Lewis et al.,
2020) their use became one of the main methods
of solving this problem. However, such methods
require a lot of well-annotated data for training.
Currently there are no datasets available for this
task in a scientific field in Russian, and manual
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annotation takes a long time and requires the efforts
of more than one person to objectively label the
relations. Therefore, in this paper we decided to
pay our special attention to zero-shot and few-shot
approaches that do not require a lot of annotated
data. There are some examples of them.
The first method is based on the scores of the

probability of a sentence that the language model
can give. (Henlein and Mehler, 2022) proposed to
create a template for each relation type and then
compute increased log probability of the sentences
from these templates with the use of BERT as in
(Kurita et al., 2019). For example, a template for
the relation "LOCATED-IN" might look like this
– "the <e1> is in the <e2>". So if the first entity
is "toothbrush" and the second is "bathroom", the
sentence from the template will be "the toothbrush
is in the bathroom". With the selected threshold
of probability, it will be possible to separate the
presence or absence of relation between two entities
and also its type.

The second method was used in (Zhang and Lu,
2022; Zhang et al., 2022). The primary idea behind
this approach is that one can get prototype vectors
for each type of relation and then use them to define
the relations between pairs of entities. To create a
prototype vectors the authors used sentences from
the train part of the dataset, as well as the name
and the description of the relations. A prototype
vector of each relation can be compared with actual
sentences that contain the pair of entities. The
closest prototype in vector space will reflect the
relation in the sentence. In (Zhang et al., 2022)
the authors employed BERT (Devlin et al., 2019)
as the encoder to map the sentences into a low-
dimensional vector space.
Last but not least, (Lan et al., 2022) proposed a

third method that trains the model to extract rela-
tions from unstructured text, while the train and test
sets of relations do not intersect. At first, the model
was trained to find the probability for different sets
of potential relations from the train dataset and then
to find the boundaries of two entities. After that
it can process any new texts and does not need to
know the types of relations. To find the probabil-
ity for some relations in the sentence the authors
offer to encode semantics of the relation types by
given the combined sentence like "[CLS] text-of-
the-sentence [SEP] text-of-the-relation [SEP]" to
BERT. If the model has these sentences for each
relation type, it is possible to get the probability

distributions over candidate relations.

3 Data Preparation

To conduct the experiments with different ap-
proaches we created an annotated dataset which is
composed of abstracts of scientific papers on 10
domains in Russian. The list of domains includes
the following: Biology and Medicine, History and
Philology, Journalism, Law, Linguistics, Math, Ped-
agogy, Physics, Psychology and Information Tech-
nology.

To test the approaches we used 20% of the texts
on each of the subject areas.
Statistics for our dataset is presented in Table 1.

Unit number
texts 400
tokens 17 481
terms 5 834
relations 976

Table 1: Dataset statistics

Each abstract was annotated by two annotators.
The task was to classify the relations between each
possible pair of terms in each sentence in the ab-
stract. The terms in the texts were already extracted.
During the annotation, we followed the instructions
proposed in (Bruches et al., 2020).
For our experiments we chose 3 following ori-

ented semantic relations: USAGE, ISA, PART-OF.
Those relation were selected because they are com-
mon to all considered domains. The types of re-
lations in the corpus, along with their meanings
and distribution across the dataset, are provided in
Table 2.

Relation type Meaning number
USAGE x is used for/in y 544
ISA x is y 270
PART_OF x is part of y 162

Table 2: Types of relations

In Table 3 sample sentences of all three relation
types in the dataset are presented. In each sam-
ple two terms and the relation between them are
highlighted.
The dataset is available for other researchers2.

2https://github.com/iis-research-team/ruserrc-dataset
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Relation
type

Example Translation

USAGE В статье рассматривается способ
<e1>формирования тектовых
сообщений</e1> на основе <e2>метода
движения губ</e2>, сооветствующего
определенной фонеме.

The article considers a method of <e1>formation
of text messages</e1> based on <e2>the method
of movements of lips</e2> corresponding to a
certain phoneme.

ISA Одним из самых точных и эффективных
<e1>способов управления жестами</e1>
является <e2>управление активностью
мышц</e2>.

One of the most accurate and effective <e1>ways
to control gestures</e1> is to <e2>control mus-
cle activity</e2>.

PART_OF Метод обработки и определения
форм слов позволяет в отличие от
аналогов обрабатывать формы слов
<e1>естественных языков</e1> различных
групп и <e1>семейств</e1>.

Unlike analogies, the method of processing and
definiting forms of words allows to process the
forms of words from <e1>languages</e1> of dif-
ferent groups and <e2>families</e2>.

Table 3: Examples of relations

4 Zero-shot and few-shot approaches for
relation extraction

4.1 Using perplexity scores
In the first place, we tried an approach for relation
extraction based on perplexity scores. It can be
traced to zero-shot approaches. It consists in the
following: for each type of relation we had made
3 patterns of the sentences. The patterns and their
meaning are provided in Table 4.
Then the terms were added to these templates

to make sentences. For example, the pattern for
USAGE is "{term1} are used in {term2}". So if
the first term is "multimedia technologies" and the
second is "the educational process", the sentence
from the template will be "multimedia technologies
are used in the educational process".
Then we got an estimate of the probability of

each sentence using the model GPT2 (Radford
et al., 2019). After choosing the most probable
pattern for each relation, we again compared the
probability of sentences from these best templates.
The most likely sentence would reflect the true
relation between the terms. The schematic work of
the method is presented in the Figure 1.

Figure 1: Schema for the perplexity scores approach

Tomeasure the probability we used the perplexity
score. In general, this value can be described as the
model uncertainty measure when predicting each of
the next token, hence the lower the perplexity, the

more certain the model in predicting this sequence.
The obtained metrics for this approach are shown

in Table 5.

4.2 Using prototype vectors of relations

The second approach for relation identification that
we tried is based on the usage of the prototype
vectors of relations. It can be attributed to few-shot
approaches. First of all, we manually chose 138
best examples from the train part of the dataset
to create a prototype vectors for each type of re-
lations. In selecting the best examples we were
guided by the following criterion: the example
shows only one type of relations and has short con-
text which includes only two terms of interest. Then
we got the vectors of these of sentences. Vectors of
sentences are the embeddings of CLS token from
BERT(Devlin et al., 2019). Each prototype vector
is an average of the vectors of sentences reflecting
each relation. Once these prototype vectors are
obtained, they can be used to classify test examples.
By computing the value of the cosine similarity
of the example and the prototypes, we can deter-
mine which relation is most similar to this example.
Schematic graphics that reflect the work of this
method can be seen in Figure 2.

The obtained metrics for this approach are shown
in Table 6.
However, this method falls short in defining the

"ISA" relation type and generally performs most
effectively in identifying the "USAGE" relation.
There are several reasons for this. First of all, quite
often the relations are not expressed explicitly by
some specific words or phrases, but with seman-
tics, which are difficult to automatically find and
understand in the text. The second reason is the fact
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Relation type Patterns Meaning

USAGE
x используется для y x is used for y
x применяется для y x is used for y
y выполняется при помощи x y is done with x

ISA
x является y x is y
x представляет собой y x represents y
x – это y x is y

PART-OF
x является частью y x is a part of y
y состоит из x y consists of x
y включает в себя x y includes x

Table 4: Patterns of relations

Relation type Precision Recall F1
USAGE 0.69 0.37 0.48
ISA 0.46 0.38 0.42
PART_OF 0.15 0.41 0.22
macro-average 0.43 0.39 0.37

Table 5: Metrics for perplexiry score approach

Figure 2: Plot for the prototype vectors approach

Relation type Precision Recall F1
USAGE 0.59 0.81 0.68
ISA 0.00 0.00 0.00
PART_OF 0.22 0.24 0.23
macro-average 0.38 0.51 0.30

Table 6: Metrics for the prototype vectors approach

that all of these relations are expressed in similar
contexts. For example, parentheses or colons can
associate terms with both "ISA" and "PART-OF"
relations. At the same time, the preposition "в" (in)
depending on the terms it links, can express the
relation "PART-OF" as well as "USAGE".

5 Classification task with a CLS-vector

To compare the approaches that were specified
above with the classic supervised learning method
we used the neural network architecture described
by the authors in (Wu and He, 2019).
The algorithm of this model is as follows: We

use the vector of a special token CLS (which is

regarded as the input text vector) and the vector of
two terms connected by the relation. These three
vectors are concatenated and the resulting vector is
fed to the classifier. We used 80% of our annotated
dataset to train the model.
The results that we were able to achieve are

described in the Table 7.
It is clear that "PART-OF" relation type has the

lowest F1-score of all relations. The reason for this
is likely to be the lack of examples of this relation
in the training data.

Relation type Precision Recall F1
USAGE 0.84 0.95 0.89
ISA 0.83 0.76 0.79
PART_OF 0.58 0.41 0.48
macro-average 0.75 0.71 0.72

Table 7: Metrics for supervised learning

6 Discussions

The results of our experiments show that zero-shot
and few-shot approaches are generally able to dis-
tinguish semantic relations. But these methods still
lose in quality in comparison with the supervised
learning. It gives us the understanding that metrics
obtained in the experiments are not a limit and there
is a space for the research to grow.

For example, we assume that if we add more pat-
terns for the model to choose from in the perplexity
score method or put more appropriate examples
in the set for prototype vectors this will greatly
improve the results.

Of course, still there are some aspects of relation
extraction that are extremely difficult to solve. For
instance, the extraction of the terms that are not
connected by any relation.

7 Future Work

We are definitely going to further develop relation
extraction area for the Russian language since it
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is still low-resource language. Due to the lack of
data the Russian language requires adaptation of
existing solutions for English or development of
brand new ones.
One of the ideas that we are about to thy in

the foreseeable future is to translate the sentences
from Russian to English and use some good quality
method for relation extraction from English text.
It would also be interesting to conduct cross-

domain experiments for each of the methods as the
annotated dataset has been prepared for a number
of disciplines. We are not entirely sure that the
results will be representative in all domains because
the texts of some of the disciplines have a limited
amount of the examples of some relations. But it is
still worth to try.

8 Conclusion

This study aimed to address the problem of lack
of labeled data for relation extraction in Russian
scientific texts by constructing a new dataset. One
zero-shot and one few-shot approach for relation ex-
traction were then evaluated, one based on perplex-
ity score and the other utilizing prototype vectors of
relations. The experimental results indicated that
both methods can achieve reasonable performance,
highlighting the potential of zero-shot and few-shot
approaches for relation extraction in Russian scien-
tific texts across different domains. These findings
suggest that zero-shot and few-shot approaches
could be a promising direction for relation extrac-
tion research, especially in low-resource languages
such as Russian.
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Abstract

We consider automatically identifying the de-
fined term within a mathematical definition
from the text of an academic article. Inspired
by the development of transformer-based natu-
ral language processing applications, we pose
the problem as (a) a token-level classification
task using fine-tuned pre-trained transformers;
and (b) a question-answering task using a gen-
eralist large language model (GPT). We also
propose a rule-based approach to build a la-
beled dataset from the LATEX source of papers.
Experimental results show that it is possible to
reach high levels of precision and recall using
either recent (and expensive) GPT 4 or simpler
pre-trained models fine-tuned on our task.

1 Introduction

Mathematical scholarly articles contain mathemat-
ical statements such as axioms, theorems, proofs,
etc. These structures are not captured by traditional
ways of navigating the scientific literature, e.g.,
keyword search. We consider initiatives aiming at
better knowledge discovery from scientific papers
such as sTEX (Kohlhase, 2008), a bottom-up solu-
tion for mathematical knowledge management that
relies on authors adding explicit metadata when
writing in LATEX; MathRepo (Fevola and Görgen,
2022), a crowd-sourced repository for mathemati-
cians to share any additional research data along-
side their papers; or TheoremKB (Mishra et al.,
2021), a project that extracts the location of theo-
rems and proofs in mathematical research articles.
Following these ideas, we aim at automatically
building a knowledge graph to automatically index
articles with the terms defined therein.

As a first step, we consider the simpler prob-
lem of, given the text of a formal mathematical
definition (which is typically obtained from the
PDF article), extracting the definienda (terms de-
fined within). As an example, we show in Figure 1
a mathematical definition (as rendered within a

Figure 1: Rendering of a definition from a mathematical
scholarly article (Nagy, 2013) accompanied with its
LATEX source code. The definienda are “spread” and
“components”.

PDF article, accompanied with its LATEX source
code) that defines two terms (which we call the
definienda): “spread” and “components”. In this
particular example, the two terms are emphasized
in the PDF (by being set in a non-italic font within
an italic paragraph) – this is not always the case but
we will exploit the fact that some authors do this to
build a labeled dataset of definitions and definienda.

After discussing some related work in Section 2,
we describe our approach in Section 3 and show
experimental results in Section 4.

2 Related work

The difficulties of our task lie in (1) the lack of la-
beled datasets; (2) the diversity in mathematicians’
writing style; and (3) the interplay of discourse and
formulae, which differentiate mathematical text
and text in the general domain. We review poten-
tial corpora and existing approaches in this section.

The most relevant work to our objective is by
Berlioz (2023). The author trains supervised clas-
sifiers to extract definitions from mathematical pa-
pers from arXiv. The best classifier takes static
word embeddings built from arXiv papers, part-
of-speech features of the words, and hand-coded
binary features, such as if a word is an acronym,
and then applies a BiLSTM-CRF architecture for

31



sequence tagging (Huang et al., 2015). The re-
sulting precision, recall, and F1 are of 0.69, 0.65,
and 0.67 respectively. The author uses the classi-
fier to automatically extract term-definition pairs
from arXiv articles and Wikidata, resulting in the
dataset ArGot (Berlioz, 2021). Note however that
a limitation of ArGot, which makes it unsuitable in
our setting, where the text of definitions is directly
taken from PDFs, is that mathematical expressions
and formulas are masked out in the training set.

Another related task is term-definition extraction
in the general domain of scientific articles. For
example, Scholarphi (Head et al., 2021) is an aug-
mented reading interface for papers with publicly
available LATEX sources. Given a paper (with its
LATEX source), it lets the reader click on specific
words to view their definitions within the paper.
The authors test several models for definition–term
detection, including an original Heuristically En-
hanced Deep Definition Extraction (Kang et al.,
2020), syntactic features, heuristic rules, and dif-
ferent word representation technologies such as
contextualized word representations based on trans-
formers (Vaswani et al., 2017). The results show
that models involving SciBERT (Beltagy et al.,
2019) achieved higher accuracy on most mea-
surements due to the domain similarity between
the scholarly documents for pre-training SciBERT
and those used in the evaluation. Following this
idea, cc_math_roberta (Mishra et al., 2023) is a
RoBERTa-based model pertained from scratch on
mathematical articles from arXiv (Mishra et al.,
2023). This model outperforms Roberta in a
sentence-level classification task while the cor-
pora size for pre-training cc_math_roberta is much
smaller than Roberta’s. We aim to determine in
this work if contextualized word representations
can improve the results of mathematical definienda
extraction.

NaturalProof (Welleck et al., 2021) is a cor-
pus of mathematical statements and their proofs.
These statements are extracted from different
sources with hand-crafted rules, such as the con-
tent being enclosed by \begin{theorem} and
\end{theorem} in the LATEX source of a text-
book project on algebraic stacks1. Each statement
is either a theorem or a definition. However, this
dataset does not annotate the definienda of each
definition.

1https://github.com/stacks/
stacks-project

3 Proposed Approach

We describe our approach in two steps. First, we
build a ground-truth dataset using the LATEX source
of papers. As the existing large datasets either
concern term–definition extraction from general
corpora like web pages or textbooks (Welleck et al.,
2021) or mask out mathematical expressions in the
text (Berlioz, 2021), we decide to process plain text
as it appears in scholarly papers so that our solu-
tion can be directly applied to texts extracted from
PDF articles when the LATEX source is unavailable.
Second, we study different usages of transformer-
based models to extract definienda. We are inter-
ested in fine-tuning and one-shot learning (prompt
engineering). The source code of our approach,
as well as the constructed dataset, is available on
Github2.

3.1 Dataset Construction
To start with a reasonable corpus, we collected
the LATEX source of all 28 477 arXiv papers in the
area of Combinatorics (arXiv’s math.CO category)
published before 1st Jan 2020 through arXiv’s
bulk access from AWS3. Our goal in building the
dataset was not to be complete, but to produce
as cheaply and reliably as possible a ground-truth
dataset of definitions and definienda. For this
purpose, we rely on two features of definitions
that some authors (but definitely not all!) use:
definienda are often written in italics within the
definition (or, as in Figure 1, in non-italics within
an italics paragraph); and definienda are some-
times shown in parentheses after the definition
header. As we do not need to completely cap-
ture all cases in the building of the dataset, we
assume that definitions are within a definition
LATEX environment and thus extracted text
blocks between \begin{definition} and
\end{definition}; we ignored contents en-
closed in other author-defined environments, such
as \begin{Def}, which might bring us more
definitions but also more noise. For defined terms,
relying on the two features described above, we
extracted the contents within \textit{} and
\emph{} from the text blocks as well as the
content potentially provided as optional argument
to the \begin{definition}[] environment.
We then converted the extracted partial LATEX

2https://github.com/sufianj/def_
extraction

3https://info.arxiv.org/help/bulk_
data_s3.html

32



code into plain text with Unicode characters us-
ing pylatexenc4. After a brief glance at the
most frequent extracted definienda values, we hand-
crafted regular expressions to filter out the follow-
ing recurrent noises among them:

• irrelevant or meaningless phrases such as re-
peating “i.e.” and “\d”;

• Latin locutions such as “et al.”;
• list entries such as “(i)” and “(iii)”.

After filtering, we got a list of 13 692 text blocks,
of which the average length is 70 tokens, and the
maximum length is 5 266 tokens. We removed
39 text blocks having more than 500 tokens. Fi-
nally, we labeled automatically the texts with IOB2
tagging, where the “B-MATH_TERM” tag de-
notes the first token of every defined term, “I-
MATH_TERM” tag indicates any non-initial to-
ken in a defined term, and the “O” tag means
that the token is outside any definiendum. Con-
sidering partially italics compound terms like
“\emph{non}-k-equivalent”, we annotate
“non-k-equivalent” as a definiendum. We sorted the
labeled texts by the last update time of the papers.

To evaluate the quality of this dataset, we ex-
amined by hand 1 024 labeled entries. We found
that only 30 annotated texts out of 1 024 to be in-
correctly labeled, confirming the quality of our
annotation. We manually removed or corrected
wrong annotations and got 999 labeled texts, which
became our ground truth test data. We built train-
ing/validation sets for 10-fold cross-validation with
the rest of the labeled texts, to separate them from
our test data.

3.2 Fine-tuning Pre-trained Language Models
for Token Classification

For the fine-tuning setup, we consider the extrac-
tion of definienda as a token-level classification
problem: given a text block, the classifier labels
each token as B-MATH_TERM, I-MATH_TERM
or O. We used the implementation for token classifi-
cation RobertaForTokenClassification in the trans-
formers package (Wolf et al., 2020). It loads a
pre-trained language model and adds a linear layer
on top of the token representation output. We ex-
perimented with an out-of-the-box and general lan-
guage model Roberta-base (Liu et al., 2019) and a
domain-specific model cc_math_roberta (Mishra
et al., 2023). Since Mishra et al. (2023) do not
report performance on token-level tasks, we used

4https://github.com/phfaist/pylatexenc

two checkpoints of it, one pretained for 1 epoch
(denoted as cc_ep01)5, and another pre-trained for
10 epochs (denoted as cc_ep10)6. Then we fed the
10 train/validation sets to train the linear layer to
predict the probability of a token’s representation
matching one of the three labels. We set the max-
imum sequence length of the model to 256. We
ran all our experiments with a fixed learning rate of
5 · 10−5 and a fixed batch size of 16. We searched
the best number of epochs among [3, 5, 10]. We
also experimented with 1 024, 2 048, and 10 240
samples from each training set to see the perfor-
mance of the classifiers with low resources. As
Roberta-base and cc_math_roberta have their own
tokenizers, the models’ output loss and accuracy
are based on different numbers of word pieces and
are not comparable. To evaluate the predictions,
we used the predicted tag of the first word piece of
each word and regrouped the IOB2-tagged word
into definienda. We present our unified evaluation
over ground truth data in Section 4.

3.3 Querying GPT

Driven by the growing popularity of few-shot learn-
ing with pre-trained language models (Brown et al.,
2020), we also query the GPT language model,
using different available versions: we first exper-
imented with ChatGPT7 (based on GPT 3.5) and
then used the API versions of GPT-3.5-Turbo and
GPT-4. We initially gave ChatGPT only one ex-
ample in our question and attempted to obtain a
IOB2-compliant output. We quickly realized that
the returned tagging was random, unstable, and
incoherent with the expected terms. However, if
we ask ChatGPT to return the definienda directly,
we get more pertinent results. We thus asked GPT-
3.5-Turbo and GPT-4 to identify the definienda in
our ground truth data via OpenAI’s API. For each
request, we send the same task description (system
input) and a text from our test data (user input). We
fixed the max output length to 128 and temperature
to 0. By the time of writing, the cost of these API
are count by tokens – GPT-4 8K context model’s
input and output token prices are 20 and 30 times
that of GPT-3.5 4K context model. Since GPT-4
tend to give more precise and shorter responses,

5https://huggingface.co/InriaValda/cc_
math_roberta_ep01

6https://huggingface.co/InriaValda/cc_
math_roberta_ep10

7An example of our conversation:
https://chat.openai.com/share/
c96b156f-cba1-4804-8f19-1622a9bc564e
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the cost of GPT-4 on our task is roughly 20 times
that of GPT-3.5. For our test, we spent $0.42 on
GPT-3.5 and $7.80 on GPT-4.

4 Evaluation

Now that we got the predictions from our fine-tuned
token classifiers and the answers from GPT models,
we compared them with ground truth data. We first
removed the repeated expected definienda for each
annotated text and got 1 552 unique definienda in
total. Then we converted both expected terms and
extracted terms to lowercase. For each unique ex-
pected term, if it is the same as an extracted term,
we counted one “True Positive”. We counted one
“Cut Off” if it contains an extracted term. If it is
contained in an extracted term, we counted one
“Too Long”. Finally, we removed all spaces in
the expected term to make an expected no-space
string, and we joined all extracted terms to make
an extracted no-space string; if the extracted no-
space string contains the expected no-space string,
we considered that the expected term is extracted
as one “True Positive or Split Term”. We calcu-
lated the precision, recall, and F1-score using the
“True Positive or Split Term” count to have a higher
tolerance for boundary errors on all models. Ta-
ble 1 shows the results of GPT’s answers. Tables 2
and 3 present the averaged performance of cc_ep01,
cc_ep10 and Roberta over 10-fold cross-validation.
We set the best precision, recall, and F1-scores in
bold across these three tables.

Our first remark is the high recall of GPTs’ an-
swers. Indeed, GPT models, especially GPT-3.5,
tend to return everything in the given text, resulting
in poor precision. After checking the outputs over
the 1024 test data, we found an over-prediction
of formulas and mathematical expressions, which
corresponds to the analysis by (Kang et al., 2020).

Our second remark is that fine-tuned classi-
fiers have more balanced precision and recall, as
the numbers of extracted terms are closer to the
expected number (1 552). To our surprise, al-
though the tokenizer of cc_math_roberta models
produced fewer word pieces than Roberta’s tok-
enizer, Roberta-base yielded the best performance
among the three models in our task, regardless the
size of the training set. Moreover, cc_math_roberta
models’ performance varies more than Roberta’s
(see in Table 4), showing that cc_math_roberta
models are less robust to different input data.

In all the setups, cc_ep01 was always the worst

Model GPT-3.5 GPT-4

Extracted 6867 2245
True Positive 1072 942
TP+Split Term 1315 1383
Too Long 379 595
Cut Off 656 138
Precision 0.1929 0.6248
Recall 0.8312 0.8821
F1 0.3131 0.7315

Table 1: Performance comparison of extraction by GPT
models. The huge number of extracted terms results in
the poor precision of GPT-3.5 model.

Model cc_ep01 cc_ep10 Rob.

Extracted 2093.0 1710.8 1764.2
True positive 514.9 881.2 934.2
TP+Split Term 693.8 1056.5 1127.5
Too Long 170.2 209.1 268.8
Cut Off 522.6 405.2 326.1
Precision 0.354 0.623 0.646
Recall 0.447 0.681 0.726
F1 0.383 0.647 0.679

Table 2: Averaged performance of fine-tuned models,
with 2048 training data.

for our task, implying the benefit of pre-training.
The performances of all fine-tuned models im-
prove significantly as the training set size increases.
When given 10 240 training data, fine-tuning a pre-
trained model gives better overall predictions than
GPT-4, and when given 2048 training data, fine-
tuned Roberta-base already gives better precision
than GPT-4.

Finally, note that these finetuned language mod-
els are obviously much less computationally expen-
sive than OpenAI’s GPT models.

5 Conclusion

In this work, we have contributed to the efficient
creation of a labeled dataset for definiendum ex-
traction from mathematical papers. We have then
compared two usages of transformers: asking GPT
vs fine-tuning pre-trained language models. Our
experimental results show GPT-4’s capacity to un-
derstand mathematical texts with only one example
in the prompt. We highlight the good precision–
recall balance and the relatively low cost of fine-
tuning Roberta for this domain-specific information
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Model cc_ep01 cc_ep10 Rob.

Extracted 1775.2 1779.2 1770.5
True positive 540.3 972.6 1082.6
TP+Split Term 733.9 1152.5 1232
Too Long 143.5 201.3 233.7
Cut Off 509.6 438.2 274.1
Precision 0.420 0.652 0.697
Recall 0.473 0.743 0.794
F1 0.442 0.692 0.742

Table 3: Averaged performance of fine-tuned models,
with 10 240 training data samples

Model cc_ep01 cc_ep10 Rob.

2048 0.044 0.052 0.031
10240 0.043 0.026 0.011

Table 4: The standard deviation of the F1 score of dif-
ferent fine-tuned models, with 2048 and with 10 240
training data samples

extraction task. A constraint of our work comes
from the nature of our labeled data because authors
have their own writing styles: there could be more
than one correct annotation for a phrase. For in-
stance, our definition blocks are compiled from
LATEX sources, and we plan to test our fine-tuned
models on definitions extracted from real PDF
format papers without LATEX sources. Pluvinage
(2020) proposes sentence-level classification and
text segmentation to retrieve mathematical results
from PDF and can provide a preliminary test set for
us. For future work, we will explore the ambigui-
ties of extracted entities and link them to classes.
Our experience with cc_math_roberta models also
open up research about improving the robustness
over different NLP tasks of from-scratched domain-
specific language models.
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Abstract 

We describe a novel dataset for the 

automated recognition of named taxonomic 

and other entities relevant to the association 

of viruses with their hosts. We further 

describe some initial results using pre-

trained models on the named-entity 

recognition (NER) task on this novel 

dataset. We propose that our dataset of 

manually annotated abstracts now offers a 

Gold Standard Corpus for training future 

NER models in the automated extraction of 

host-pathogen detection methods from 

scientific publications, and further explain 

how our work makes first steps towards 

predicting the important human health-

related concept of viral spillover risk 

automatically from the scientific literature. 

1 Motivation and Related Work 

The pace of novel zoonotic diseases is increasing 

globally (Han et al. 2016), but much of our 

knowledge about the geography and hosts of 

zoonotic diseases remains locked in the texts of 

published scientific articles (Upham et al. 2021). 

Published studies typically apply one or more 

methods for pathogen detection in animal hosts, 

including antibody tests, polymerase chain reaction 

(PCR) tests, whole genome sequencing, or live 

pathogen isolation. Similarly, the host species 

might be identified morphologically or using PCR. 

These methods of detecting host-pathogen 

interactions vary in precision and in what they tell 

us about the ecological relationship being 

observed; most critically, whether the animal host 

is a reservoir for pathogen replication and 

transmission, or else a more transient host. 

 

Distinguishing the confidence in host-pathogen 

data according to type of detection method has 

been shown to significantly improve models 

predicting zoonotic disease risk in rodents (Mull et 

al. 2021). However, the information required to 

incorporate detection method as a variable in 

zoonotic disease risk models is rarely available 

from current host-pathogen databases or article 

metadata, with the important exception of (Olival 

et al., 2017), which we explore further here. 

 

Named Entity Recognition (NER) methods have 

the potential to assist in identifying host-pathogen 

interactions, by the automated extraction of virus-

host and other pathogen detection methods from 

the biological literature, enabling advances in 

scientific understanding of how and why zoonotic 

diseases emerge. There are currently no existing 

datasets for this purpose, and therefore a 

comparison cannot be furnished. In the bio-

medical domain, NER models such as 

BioRedditBERT (Basaldella et al., 2020), 

SapBERT (Liu et al., 2021), and 

Biobert_ncbi_disease_ner (Doğan et al., 2014), are 

trained on large datasets (as described in Section 3), 

whereas we manually curate a novel, much smaller 

dataset (as described in Section 2), albeit attracting 

the additional challenges of performing NER 

effectively on “small” data. Additionally, virus 

detection methods are manually labelled and 

recognized via NER after training, which is the first 

such result in the literature. 

 

The Information Extraction (IE) challenges in the 

NER task on biological scientific articles are highly 

similar to those in other domains, such as 

astrophysics, as exemplified by the DEAL: 

Detecting Entities in the Astrophysics Literature 

(DEAL, 2022) competition. It is true of many 

domains that there is a diversity of naming 

practices, rampant ambiguity, and a highly 

dynamic vocabulary. We therefore envision our 

data-collection approach, piloted here on host-

pathogen literature, to be highly generalizable to 

other scientific domains. 
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Rasha Alshawi, Atriya Sen 

University of New Orleans 
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2 Dataset description 

Our virus dataset was built by manually collecting 

1104 articles reporting virus detection results for 

mammal hosts. The articles were selected from the 

dataset collected and analyzed as part of a 

systematic literature review of all known viruses 

with mammal hosts, as reported in (Olival et al., 

2017). 

 

Their review searched the Web of Science, Google 

Scholar, and PubMed for articles published 

between 1940 and 2015 that mentioned each of 586 

virus species identified as having mammal hosts by 

the International Committee on Taxonomy of 

Viruses, 8th Edition (Fauquet et al. 2005). They 

excluded articles reporting results from 

experimental infections, zoos, or captive breeding 

facilities as well as domesticated and peri-domestic 

mammal species (specifically Mus musculus and 

Rattus norvegicus). The final list of articles they 

analyzed is available online as part of the paper’s 

supplementary data in the “references.txt” file 

(https://zenodo.org/record/807517). Since the 

supplementary data did not include article 

abstracts, we searched by article title in the 

PubMed search engine (PubMed,2022), and with 

our additions, the dataset we report here represents 

a substantial fraction of all published articles 

reporting viruses detected in wild mammals.  

 

524 of these abstracts were preprocessed and 

manually annotated in the form of Gold Standard 

Corpus (GSC) for the Name Entity Recognition 

(NER). The annotations were conducted following 

well-defined guidelines to ensure consistency and 

accuracy. NER annotation necessitates explicit 

rules to mark the boundaries and class of each 

entity. We adopted the widely recognized Inside, 

Outside, Beginning (IOB) tagging format (Perera 

et al., 2020). According to this format, entities are 

denoted by 'B-' at the beginning, 'I-' for tokens 

inside the entity, and 'O' to indicate tokens without 

any entity association. The 'B-' prefix signifies the 

start of an entity, while 'I-' indicates tokens within 

the entity. Tokens with 'O' tags do not belong to any 

entity. This clear and standardized approach to 

annotation was diligently applied a clear and 

standardized annotation methodology to identify 

virus names, host names, and other pertinent 

entities within the abstracts. Following the Inside, 

Outside, Beginning (IOB) format, we maintained 

consistent definitions of entity boundaries and 

classes. This meticulous approach resulted in a 

well-annotated Gold Standard Corpus (GSC), 

comprising 1104 annotated abstracts, serving as a 

valuable resource for training and evaluating Name 

Entity Recognition (NER) models. 

The manual annotation process was inherently 

time-consuming, amplified by challenges in 

disambiguating entities. Ambiguities, especially 

when a term represented both a virus name and a 

host name, required careful contextual analysis. To 

address this, we implemented a straightforward 

rule: incorporating the term 'virus' as an entity 

marker ('B-virus name' for the beginning and 'I-

virus' for tokens inside). Despite these challenges, 

our systematic approach and integration of specific 

entity markers ensured precise annotations within 

our GSC. These efforts establish a solid foundation 

for developing accurate NER models tailored to 

extract host-pathogen detection methods from 

scientific publications. 

 

 

 

 
Figure 2: Entity Distribution Graph of Our Dataset. 

 

 

 

 

 

Figure 1: A sample from the dataset demonstrating 

the annotation process according to Inside, Outside, 

Beginning (IOB) gold standard corpus. (a) shows the 

annotation process that includes highlighting and 

classifying the entities, (b) shows the output 

annotated in form of IOB standard. 
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3 Transformer-based Model 

This section describes the model architectures, 

training, and evaluation procedures for the named-

entity recognition (NER) task we performed. All 

our code, written in Python & using Google 

TensorFlow, will be made freely available online 

upon publication. 

 

Transformer models were the first deep neural 

network-based sequence transduction model based 

entirely on the concept of attention. The model 

architecture is composed of the transformer’s 

encoder, based on the original implementation 

described in (Vaswani et al., 2017), and followed 

by a classification model. Similar to other sequence 

processing models, the architecture first uses an 

embedding layer to convert the input tokens into a 

feature vector representation and a positional 

encoding layer to provide information about the 

order of the sequence. The encoder block consists 

of self-attention layers, normalization layers, and 

feed-forward layers (i.e., a multilayer perceptron 

(MLP)), and outputs a vector for each time step of 

an input sequence. The classification model uses a 

feed-forward network to classify these sequences 

into predefined named entities, therefore 

performing a sequence classification task. 

 

We deployed a Bidirectional Encoder 

Representations from Transformers (BERT) 

model, a transformer-based model that leverages a 

fine-tuning-based approach for applying a 

pretrained language model, i.e., a model trained on 

a generic task in a semi-supervised manner, and 

then fine-tuned on a specific task in a supervised 

manner (Devlin et al., 2018). Leveraging 

pretrained language models significantly improves 

performance on many tasks, especially when 

labeled data is scarce, as in our use-case. 

 

Three distinct pretrained BERT models were used, 

each followed by a classifier model to project the 

output onto predefined named entities. Since there 

is no available BERT model that is pretrained on 

virus and host-related biological literature, 

available models pretrained on general biological 

and biomedical literature were used: (1) 

BioRedditBERT, pretrained on large biomedical 

documents and health-related Reddit posts 

(Basaldella et al., 2020), (2) SapBERT, pretrained 

on abstracts from PubMed and full-text articles 

from PubMed Central (Liu et al., 2021), and (3) 

Biobert_ncbi_disease_ner, fine-tuned for NER 

task on NCBI disease dataset. The NCBI dataset 

consists of 793 PubMed abstracts and contains 

6,892 disease mentions (Doğan et al., 2014). All 

three models are hosted on the HuggingFace 

model repository. 

 

The pretrained model may be used as a feature 

extractor by freezing the model’s weights and 

training only the classification model on the target 

dataset, or, the weights of some neural layers may 

be unfrozen and updated on the target task, which 

is known as fine-tuning. Since these models were 

pretrained on a different corpus, we obtained 

slightly better results using fine-tuning. 

4 Results 

An NER experiment was performed to evaluate the 

quality of the novel dataset. To evaluate and 

compare NER models using Gold Standard 

Corpora, it is required to use standardized 

evaluation scores. A frequently used error measure 

is the F-Score, a combination of Recall and 

Precision. NER models were also evaluated using 

the accuracy metric. Table 1 shows the evaluation 

performance of the basic transformer model and 

performance after fine-tuning of the three 

pretrained BERT models. Table 2 shows the 

evaluation performance of the models using the 

feature extraction learning method described in the 

previous section. SapBERT obtains the best 

performance in both fine-tuning and feature 

extraction learning, probably due to its relatively 

general nature. Table 3 shows the loss metrics after 

training the models for 20 epochs. 

 

The visualized annotations in Error! Reference s

ource not found. show that the SapBERT model 

Table 1: Performance evaluations of the transformer 

and the three pretrained BERT models finetuned on our 

novel dataset. 

Model Acc. Prec. Recall F1 

Transformer 0.9826 0.9793 0.9826 0.9795 

BioReddit 

BERT 

0.9814 0.9772 0.9814 0.9770 

SapBERT 0.9857 0.9870 0.9857 0.9853 

Biobert_ncbi 0.9846 0.9840 0.9846 0.9832 
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was able to detect and classify almost all the 

entities of interest: both taxonomic names and 

detection method names (the latter is a novel 

result), that appeared in the abstracts. 

 

 
 

 
 

Figure 3: The visual results of the transformer and two 

pretrained BERT models of a sample drawn from the 

dataset: (a) transformer (b) BioRedditBERT. All the 

BERT models were pretrained on biological and 

health-related literature, and then fine-tuned on our 

novel dataset. Red lines underscore unrecognized 

entities. 

 

 

 

 

 

 

 

 

 

 

 

 

 

5 Conclusions, Impact & Potential 

We have presented a novel dataset of significance 

to the important concept of virus-host association, 

and therefore to the emergence of pandemics such 

as the COVID-19 pandemic, and promising initial 

results on the NER task of identifying both 

taxonomic names and experimental detection 

methods. We claim that our dataset of manually 

annotated abstracts now offers a Gold Standard 

Corpus for training future NER models in the 

automated extraction of virus-host and other 

pathogen detection methods from the biological 

literature. Several other entities, particularly 

geographical entities and entities describing 

species migration, are also relevant to the virus-

host association. As a result, immediate next steps 

will consist of recognizing these entities, and also 

automatically annotating the full text of the article 

using semi-supervised methods, in lieu of manually 

annotating the abstracts. 

 

Recognized taxonomic entities in particular can be 

linked with knowledge graphs representing 

taxonomic synonymy as well as more complex 

taxonomic relationships. These graphs have been 

used (ATCR, 2022) to reason using automated 

reasoning and inference techniques such as SMT 

solving and answer-set programming about 

relationships expressed in a qualitative spatial 

logical calculus (such as a form of the region 

connection calculi), with the goals of resolving 

taxonomic ambiguity or inferring unspecified 

relationships. This has been used to align and 

disambiguate published taxonomies of primates 

and other species (Franz, N.M. et al., 2016). 

Further, the approach has the potential to be used 

in biodiversity conservation applications (Sen, A., 

Sterner, B., et al., 2021). Such inference may be 

seen as a generalized form of querying or question-

answering over taxonomic graphs, and moreover 

provides a highly intuitive and visual 

representation of taxonomic flux over time. 

Table 3: Performance evaluations of the 

pre-trained models on the virus dataset 

Model Loss 

Transformer 0.0624 

BioRedditBERT 0.0911 

SapBERT 0.0736 

Biobert_ncbi_disease_ner 0.0904 

 

Table 2: Performance evaluations of the three 

pretrained BERT models trained on our novel dataset 

using the feature extraction approach. 

 

Model Acc. Prec. Recall F1 

BioReddit 

BERT 

0.965

5 

0.9376 0.9655 0.9508 

SapBERT 0.984

9 

0.9859 0.9849 0.9844 

Biobert_ncbi 0.984

5 

0.9840 0.9846 0.9832 
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Augmenting these graphs of logical taxonomic 

relationships with automatically extracted context 

from the biological literature will have the 

important benefits of serving to identify novel 

application domains and providing extra-biological 

context (e.g., geospatial context) to known & 

inferred taxonomic relationships. 

 

Further, taxonomic automated reasoning systems 

have previously been combined (Sen, A., Sterner, 

B., et al., 2021) with statistical features extracted 

from biological image repositories (such as citizen-

sourced or herbarium-sourced images) to further 

facilitate the taxonomic relationship discovery 

task. While we have only considered textual 

abstracts in our work so far, further useful context 

may thus be added by augmenting taxonomic 

knowledge graphs with images or tables extracted 

from the full text of the publications. 

 

The recognition of a variety of intermediary 

entities (e.g., locations, methods, migration 

patterns) is likely to facilitate the discovery of the 

relevant ecological contexts of the host-virus 

associations, which, in turn, are subjectively 

known to be dependent (in some currently 

undiscovered manner) upon these entities. The 

extraction of such scientifically informative 

relationships is a further tangible step ahead. 

 

Finally, these extracted relationships may be 

considered as background structure for learning an 

explainable theory of viral spillover (from other 

mammals to humans), when taken together with 

known examples of such spillover, and known 

negative examples. Symbolic machine learning 

techniques such as Inductive Logic Programming 

(ILP) may be able to exploit such structured data 

and background knowledge to learn logical 

relationships that generalize from these data, 

expressed in a subset of first-order logic and 

interpretable directly by humans: it is in this sense 

that we use the term explainable. 

Acknowledgment 

This research was supported by the National 

Institute of Allergy and Infectious Diseases of the 

National Institutes of Health. The award number 

has been withheld for anonymity.  

41



 
 

 

References  

Upham, Nathan S, Jorrit H Poelen, Deborah Paul, 

Quentin J Groom, Nancy B Simmons, Maarten P M 

Vanhove, Sandro Bertolino, et al. “Liberating Host–

Virus Knowledge from Biological Dark Data.” The 

Lancet Planetary Health 5, no. 10 (October 1, 2021): 

e746–50. https://doi.org/10.1016/S2542-

5196(21)00196-0. 

Han, Barbara A., Andrew M. Kramer, and John M. 

Drake. “Global Patterns of Zoonotic Disease in 

Mammals.” Trends in Parasitology 32, no. 7 (July 1, 

2016): 565–77. 

https://doi.org/10.1016/j.pt.2016.04.007. 

Mull, Nathaniel, Colin J. Carlson, Kristian M. Forbes, 

and Daniel J. Becker. “Viral Competence Data 

Improves Rodent Reservoir Predictions for American 

Orthohantaviruses.” BioRxiv, January 4, 2021, 

2021.01.01.425052. 

https://doi.org/10.1101/2021.01.01.425052. 

Olival, J, et al. “Host and viral traits predict zoonotic 

spillover from mammals” Nature 546, pp. 646–650 

(2017). 

Fauquet, C., Mayo, M.A., Maniloff, J., Desselberger, 

U. & Ball, L.A. Virus taxonomy: Eighth Report of the 

International Committee on Taxonomy of Viruses. 

(Elsevier Academic Press, 2005)   

PubMed, 2022 URL: 

https://pubmed.ncbi.nlm.nih.gov/. 

Perera, N., Dehmer, M., Emmert-Streib, F., 2020. 

Named entity recognition and relation detection for 

biomedical information extraction. Front. Cell Dev. 

Biol. 673. 

UBIAI, 2022 URL: https://ubiai.tools/. 

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., 

Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I., 

2017. Attention is all you need. Adv. Neural Inf. 

Process. Syst. 30. 

Devlin, J., Chang, M.-W., Lee, K., Toutanova, K., 

2018. Bert: Pre-training of deep bidirectional 

transformers for language understanding. ArXiv 

Prepr. ArXiv181004805. 

Basaldella, M., Liu, F., Shareghi, E., Collier, N., 

2020. COMETA: A corpus for medical entity linking 

in the social media. ArXiv Prepr. ArXiv201003295. 

Liu, F., Shareghi, E., Meng, Z., Basaldella, M., Collier, 

N., 2021. Self-Alignment Pretraining for Biomedical 

Entity Representations. Association for Computational 

Linguistics, pp. 4228-4238. 

Doğan, R.I., Leaman, R. and Lu, Z., 2014. NCBI 

disease corpus: a resource for disease name recognition 

and concept normalization. Journal of biomedical 

informatics, 47, pp.1-10. 

DEAL, 2022 URL: DEAL Shared Task | WIESP 

(harvard.edu) 

A. Sen, N. Franz, B. Sterner, and N. Upham, 

“Automated Taxonomic Concept Reasoner and 

Learner.” http://atcrl.herokuapp.com (accessed Sep. 

02, 2022). 

Franz NM, Pier NM, Reeder DM, Chen M, Yu S, 

Kianmajd P, Bowers S, Ludäscher B. Two Influential 

Primate Classifications Logically Aligned. Syst Biol. 

2016 Jul;65(4):561-82. doi: 10.1093/sysbio/syw023. 

Epub 2016 Mar 22. PMID: 27009895; PMCID: 

PMC4911943. 

A. Sen, B. Sterner, N. Franz, C. Powel, and N. S. 

Upham, “Combining Machine Learning & Reasoning 

for Biodiversity Data Intelligence,” presented at the 

Thirty-Fifth AAAI Conference on Artificial 

Intelligence, Held virtually, 2021. 

42



Proceedings of the 2nd Workshop on Information Extraction from Scientific Publications, pages 43–48
Nov 1, 2023. ©2023 Association for Computational Linguistics

Detection of tortured phrases in scientific literature

Eléna Martel, Martin Lentschat, Cyril Labbé
Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG, 38000 Grenoble, France

{martin.lentschat,cyril.labbe}@univ-grenoble-alpes.fr

Abstract
This paper presents various automatic detection
methods to extract so called tortured phrases
from scientific papers. These tortured phrases,
e.g. flag to clamor instead of signal to noise,
are the results of paraphrasing tools used to es-
cape plagiarism detection. We built a dataset
and evaluated several strategies to flag previ-
ously undocumented tortured phrases. The pro-
posed and tested methods are based on lan-
guage models and either on embeddings simi-
larities or on predictions of masked token. We
found that an approach using token prediction
and that propagates the scores to the chunk
level gives the best results. With a recall value
of .87 and a precision value of .61, it could re-
trieve new tortured phrases to be submitted to
domain experts for validation.

1 Introduction

Over the past few years, the research community
has been confronted with an emerging issue related
to the use of content rewriting tools. These tools
are being used to hide crude plagiarism. Some
of these rewriting tools, called spinners1, used to
destroy the meaning of the rewritten text. In their
pursuit of publication and the relentless pressure to
’publish or perish’, some researchers turn to these
tools. However, these spinners, leave behind lexical
traces as they transform text, replacing words with
synonyms that may be less appropriate during the
modification process.

For scientific text, the most brutal modifications
were concerning poly-lexical sequences that carry
a specific meaning as well-established scientific
expressions: e.g. Artificial intelligence, big data or
Randomized control trial. By performing a ’word
by synonyms’ replacement, the first generation of
spinners would destroy the meaning conveyed by
these typical collocations. For example, the previ-
ously mentioned expressions could be tortured into

1SpinBot (https://spinbot.com), SpinnerChief
(https://www.spinnerchief.com)

man-made consciousness, enormous information
or randomized controlled preliminary. We define a
tortured phrase as an expression resulting from
the use of a spinner on a well-established scien-
tific expression with a specific and fixed meaning.
Its counterpart is here called expected phrase (i.e.
the original scientific expression).

Cabanac et al. (2021) reveals that such meaning-
less expressions, referred to as tortured phrases,
can actually be found in many scientific papers.
These tortured phrases not only constitute evi-
dences of the lack of reliability and relevance of
these papers, but can also be used to quickly re-
trieve articles that are thus suspected of having
employed spinners. A manually collected set of tor-
tured phrases is used as fingerprints (Cabanac and
Labbé, 2021) by the Problematic Paper Screener2

to comb the scientific literature for such problem-
atic papers. The authors are querying the academic
search engine Dimensions.ai (Herzog et al., 2020)
to retrieve articles with known tortured phrases.

The set of manually collected tortured phrases
is limited to the expertise of its contributors. Tor-
tured phrases from many scientific fields are still
to be listed as fingerprints, so to be able to flag
undetected problematic papers. To this date (13 oct.
2023), 11.945 papers containing tortured phrases
have been flagged by the website Problematic Pa-
per Screener, with more to come as the number of
known tortured phrases increases. While it’s possi-
ble that with the context of 2023, Large Language
Models can perform paraphrasing of higher quality
than spinners, it’s crucial to note that these papers
have already been published and remain accessible.
Also, amongst the 12k flagged articles, 1278 have
been published in 2023, as well as 2 articles to be
published in 2024. Therefore, this problem still re-
mains and it is of paramount importance to identify
them for retractions.

2https://www.irit.fr/~Guillaume.
Cabanac/problematic-paper-screener
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This paper aims at testing automatic methods to
distinguish differences between tortured phrases
and expected ones. The main aims being to auto-
matically identify tortured phrases that are yet not
listed. For this purpose:

• We built a data set aiming at testing detection
methods.

• We report results achieved when using differ-
ent techniques that do not require massive use
of labeled data, as such a large data set does
not exists yet.

• We explore the use of large language model
embeddings, similarity measures, masking
and prediction methods to flag automatically
tortured phrases not previously known.

The remainder of this paper is organized as fol-
lows: Section 2 discuss related work around spin-
ners and the detection of tortured phrases. Sec-
tion 3 describes the way we built our new data
set. Section 4 presents various methods and experi-
ments for which Section 5 provides detailed results.
Finally, Section 6 concludes and gives some per-
spectives on the task at hands.

2 Related Work

Spinners are capable to create several versions of
an original text by substituting synonyms and al-
tering sentence structure (Shahid et al., 2017). An
example can be taken from the following sentence:

’The cat is eating its food.’, which could be trans-
formed into: ’The feline is savoring its meal.’.

It has been shown that content rewriting tools
leave behind a trail of lexical artifacts (Shahid et al.,
2017). Some of these artifacts can manifest as tor-
tured phrases, wherein the same tortured phrase
might recur multiple times in place of an expected
one. Furthermore, Zhang et al. (2014) highlights
that approximately 94% of the vocabulary used by
these tools is not regularly changed, which could
explain why the same tortured phrases may reap-
pear multiple times and thus reinforce the need for
an effective detection method.

Some authors have set out with the objective of
detecting spun text based on dictionaries of rewrit-
ing tools. For instance, Zhang et al. (2014) relies on
tokens and phrases that remain unchanged during
the content rewriting process to assess the similar-
ity between two articles, by focusing on elements

that are not found in the dictionary and therefore
have not been substituted.

On the other hand, Wahle et al. (2022) attempts
to identify machine-generated paraphrased plagia-
rism. They created a dataset of paraphrased content
using commercial tools like SpinBot and Spinner-
chief. This dataset will encompass paraphrased
texts from arXiv, student theses, and Wikipedia ar-
ticles. They employed three types of machine learn-
ing classifiers: logistic regression, support vector
machines, and naive Bayes classification. Their
task is a binary classification to mark the text as
being spun or not.

We will be using the dataset of Wahle et al.
(2022) in our study. Given its method of fabri-
cation, it contains many undocumented tortured
phrases and is thus very valuable. Nevertheless, to
be usable for the evaluation of new tortured phrases
detection methods, re-annotation at the token level
is needed. We did perform this on a small part of
the dataset.

In Cabanac et al. (2021), the authors collected
data consisting of tortured expressions and their
expected equivalents. This will serve as a database
of known tortured phrases with their counterparts.

The usage of embeddings to detect tortured
phrases was previously explored by Lay et al.
(2022). They conclude that fixed embeddings (e.g.
GloVe (Pennington et al., 2014)), performs better
than contextual ones (e.g. BERT (Devlin et al.,
2018)) when using cosine similarity measure to dis-
tinguish tortured and expected phrases. Our work
goes beyond (Lay et al., 2022) as they only con-
sidered tortured phrases in bigrams. We extended
this method by evaluating two additional metrics,
namely Manhattan distance and Euclidean distance,
while also considering trigrams, which constitute
a significant part within our dataset. We also ex-
plored the usage of predictions of masked tokens to
detect tortured phrases, which gave more satisfying
results.

3 Dataset

Cabanac et al. (2021) collected around 3,000 dis-
tinct tortured phrases thanks to the contribution of
researchers and domain experts. Then, we take
advantage of the dataset provided by Wahle et al.
(2022), which comprises roughly 200,000 para-
graphs in both their original and paraphrased forms
using spiners. We automatically extracted, from
the Wahle et al. (2022) dataset, sentences con-
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taining known tortured phrases. This results in
around 2,000 sentences containing known tortured
phrases and approximately 4,000 sentences with
their expected phrases. However, it is worth noting
that some of the extracted sentences may poten-
tially contain previously unknown/unlisted tortured
phrases from various scientific fields, for some un-
familiar to us. This presumption stems from the
fact that these sentences have not undergone prior
analysis by domain-specific researchers. Thanks to
the contributions of other researchers, we are able
to flag occurrences of known tortured phrases and
their expected phrases. To ensure that our approach
is not biased by the presence of unknown tortured
phrases, 100 sentences were annotated using di-
verse sources (i.e. glossaries, scientific papers, and
specialized databases). In doing so, we aimed to
determine whether scientifically established expres-
sions not present in our dataset of expected phrases
would surface, and subsequently, we verified if the-
ses expressions had been altered during the para-
phrasing process.

4 Methodology

In this section, we present our methodology for the
experiments involving word embedding similarity
measures and the prediction of masked tokens to
compare tortured phrases and expected phrases.

For the word embedding approach, cosine simi-
larity and distance metrics were computed between
the tokens of tortured phrases and the tokens of
expected phrases. The two values were then com-
pared. The aim of using the word embedding was
to determine whether similarity and distance met-
rics could effectively distinguish the two classes
of phrases. The underlying idea is that expected
phrases, being conventional and legitimate, would
obtain higher similarity scores and lower distance
metrics scores, reflecting greater semantic coher-
ence and regularity compared to tortured phrases.

Bigrams and trigrams were compared by, first
calculating scores between constituent bigrams,
then aggregating the two scores via arithmetic
mean, harmonic mean or minimal value. For exam-
ple, for the bigram ’big data’, the three measures
were applied between the two tokens. For a tri-
gram like ’support vector machine’, the measures
were computed between all bigrams pairs : ’sup-
port’ & ’vector’, ’support’ & ’machine’, ’vector’
& ’machine’. The resulting scores were then ag-
gregated.Minimum takes the lowest score, mean

calculates the average, and harmonic mean weights
lower scores more strongly.

The chosen word embeddings are the ones from
the GloVe model (Pennington et al., 2014). Specif-
ically, we utilized the pre-trained ’glove-wiki-
gigaword-100’ model, which had shown good per-
formance in previous work (Lay et al., 2022). For
these experiments, we used the dataset containing
around, 2763 tortured phrases and expected coun-
terparts. The dataset is out-of-context, meaning
the phrases are extracted from their original sen-
tences. If a token within a phrase is not present in
the vocabulary, no calculation is performed.

Since the semantic of a tortured phrase is de-
stroyed during spinning (i.e. compared to the se-
mantic of a expected phrase), we though of using
language models to try to predict tokens in the text.
For this masking approach, the SciBERT (Belt-
agy et al., 2019) pretrained language model was
used to predict masked words based on surround-
ing context. The masking approach was inspired by
the methodology used in Gehrmann et al. (2019).
Specifically, we adopted their use of three metrics:
probability of the original word, rank of the origi-
nal word in the predicted distribution and entropy
over the predicted token distribution. Our goal was
to analyze whether there were significant differ-
ences in probability, ranking, and entropy between
expected and tortured phrases

Two evaluations were performed, token-level
and noun chunk-level, to thoroughly analyze ap-
proach performance on detecting tortured phrases.
Tokens were labeled as 0 or 1 for classification. O
when the token is not part of a tortured phrases and
1 when the token is part of a tortured phrase. An
optimal threshold was determined to best separate
the two classes based on the predicted scores. For
the token-level evaluation, we compared the true
and predicted categories matched for each token.

In contrast, when using noun chunk for classifi-
cation, the approach propagates the detection of a
tortured token to its chunk.The intuition being that
a noun chunk containing one tortured token can be
considered in full as a tortured phrase.
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Measures Aggregation functions Tortured phrases Expected phrases
Cosine similarity Arithmetic mean 0.136 (± 0.157) 0.289 (± 0.201)

Harmonic mean 0.134 (± 1.856) 0.284 (± 0.581)
Minimum 0.088 (± 0.153) 0.254 (± 0.205)

Manhattan distance Arithmetic mean 42.901 (± 21.922) 41.100 (± 20.233)
Harmonic mean 42.714 (± 21.852) 40.936 (± 20.171)
Minimum 40.898 (± 21.408) 39.427 (± 19.759)

Euclidean distance Arithmetic mean 5.416 (± 2.765) 5.184 (± 2.554)
Harmonic mean 5.391 (± 2.756) 5.16 (± 2.546)
Minimum 5.159 (± 2.700) 4.973 (± 2.494)

Table 1: Average similarity and distance measures depending on the aggregation function

In details, results were analyzed at the noun
chunk level using the following rules:

• A true positive (TP) is a TP if at least one
token of the chunk is labeled as tortured in
both the true and predicted categories.

• A false positive (FP) is a FP if no tokens are
tortured, but at least one is predicted as tor-
tured.

• A true negative (TN) is a TN if no tokens are
labeled as tortured in the chunk in either true
or predicted categories.

• A false negative (FN) is a FN if at least one
token is tortured in the chunk, but no token in
the chunk is predicted as tortured.

This accounts for phrases as a single unit rather
than independent tokens. Case examples can be
found in Appendix A, Table 4.

5 Results

Here, we present the results of our experiments.
The word embedding experiments analyzed simi-

larity and distance metrics on bigrams and trigrams
to compare tortured and expected phrases. The
hypothesis was that conventional phrases exhibit
greater semantic regularity in their vector repre-
sentations. The outcomes are depicted in Table 1,
which showcases the cosine similarity and distance
results for the various aggregations.

While Manhattan and Euclidean distances are
generally greater for tortured phrases than for ex-
pected phrases, the gaps are marginal compared to
cosine similarity. It exhibited the clearest differenti-
ation between tortured and expected phrases based
on word embeddings (cf. Appendix A, Figure 1).

Additionally, harmonic mean revealed to be a poor
aggregation function due to its higher variability.
However, this approach has a long computation
time which reduces its usage. In addition, while
this approach shows a distinction in the overall val-
ues between tortured and expected phrases, it is not
readily applicable to individual cases (i.e. standard
deviation values show a clear overlap).

The masking approach leveraged language mod-
els to predict masked words in context, assessing
probability, rank, and entropy differences between
phrases types. Two levels of evaluation were con-
ducted: token-level and noun chunk-level. To ana-
lyze the impact of punctuation, we first generated
predictions with and without punctuation marks.
We compared the results for the three metrics prob-
ability, rank and entropy.

Table 2 shows the precision, recall and F1 scores
for the two categories with and without punctuation.
For the expected tokens (category 0), we observe
high precision and recall score both with and with-
out punctuation. For the tortured tokens (category
1), the precision and recall scores are lower, es-
pecially without punctuation. This suggests that
the model struggles more to correctly predict the
tortured tokens. This is in part due to a class dis-
tribution imbalance in the data (i.e. the amount of
legitimate tokens far exceeds the tortured tokens),
which is hard to correct as this distribution is inher-
ent to the problem at hand. However, the scores for
class 1 improve when punctuation is present.

Table 3 shows the precision, recall and F1 scores
at the noun-chunk level. We observed improved
scores to token-level masking without noun chunks.
We obtained an interesting recall of 0.873, showing
a good capability to detect new tortured phrases,
but a precision of 0.615 implying that domain ex-
perts should still filter the phrases identified.
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With punctuation Without punctuation
Class Precision Recall F1 score Class Precision Recall F1 score

Probability Probability
0 0.96 0.70 0.81 0 0.98 0.73 0.83
1 0.32 0.81 0.46 1 0.22 0.81 0.35

Entropy Entropy
0 0.93 0.63 0.75 0 0.96 0.64 0.77
1 0.25 0.72 0.37 1 0.16 0.73 0.26

Rank Rank
0 0.96 0.73 0.83 0 0.98 0.74 0.84
1 0.34 0.80 0.48 1 0.23 0.81 0.36

Table 2: Results summary of token classification with and without punctuation.

Precision Recall F1-score
Probability

0.614 0.873 0.716
Entropy

0.589 0.873 0.706
Rank

0.615 0.867 0.718

Table 3: Results for noun chunks

6 Conclusion

This paper presents different methods to extract tor-
tured phrases from scientific papers. These tortured
phrases can then be used to query academics search
engine in search for problematic scientific papers.
The aim is to apply this identification method of
tortured phrases to increase the existing database.

The most promising method is based on large
language model token predictions propagate to
their noun chunks. It achieves a good recall ( 0.87)
but the precision still needs to be improved ( 0.61).
This means that the detection of tortured phrases
still requires some sort of manual checking by do-
main experts. We also noticed that distinguishing
tortured phrases from their legit counterpart can
be highly contextual. Future work could try to be
more context aware and explore the use of more
specific language models.
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A Example of tortured phrases

Figure 1 shows results using cosine similarity and
minimum as the aggregation function. Table 4
shows True Positive (TP) tortured phrases detected
by chunk method as well as False Positive (FP),
True Negative (TN), False Negative (FN).

Figure 1: Cosine similarity using minimum aggregation

Case Decision
width and profundity

value 1 1 1 True
predict. 0 0 1 Positive

convoluted neural system
value 1 1 1 False
predict. 0 0 0 Negative

breast cancer
value 0 0 True
predict. 0 0 Negative

brain tumor
value 0 0 False
predict. 1 0 Positive

Table 4: Example of TP, FP, FN, TN with the chunk
method
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Abstract
Large language models often excel in many
human-language tasks but tend to falter in
highly specialized domains like scholarly as-
tronomy. To bridge this gap, we introduce As-
troLLaMA, a 7-billion-parameter model fine-
tuned from LLaMA-2 using over 300,000 as-
tronomy abstracts from arXiv. Optimized for
traditional causal language modeling, AstroL-
LaMA shows marked domain adaptation by
achieving a 30% lower perplexity than LLaMA-
2. Compared to state-of-the-art foundation
models, AstroLLaMA generates more insight-
ful and scientifically relevant text completions
and embedding extraction despite having signif-
icantly fewer parameters. AstroLLaMA serves
as a highly domain-specific model with broad
fine-tuning potential: Its public release aims
to spur astronomy-focused research, including
automatic paper summarization, conversational
agent development and hypothesis generation.

1 Introduction

The advent of Large Language Models (LLMs) has
sparked interdisciplinary interest thanks to a conflu-
ence of factors: accumulation of massive datasets,
leaps in computational power, and breakthroughs
in neural architectures. Flagship models like GPT-
4 (OpenAI, 2023), PaLM (Chowdhery et al., 2022;
Goo) and LLaMA (Touvron et al., 2023; Meta,
2023) have exhibited exceptional versatility in a
variety of tasks from logical reasoning and compre-
hension to creative writing, often accomplished via

*Lead contribution. Email: joshtn@seas.upenn.edu
†Major contribution.

methods like prompting, fine-tuning, and human-
in-the-loop reinforcement learning.

The astronomy discipline presents both a unique
challenge and a fertile ground for the application
of LLMs. The corpus of scholarly texts in astron-
omy likely constitutes but a minuscule portion of
the data on which generic LLMs are trained, re-
sulting in limitations like hallucinations in favor
of more “generic” responses. Only about 2.5%
of LLaMA-2’s training set, for example, likely
comes from arXiv, of which less than 5% belongs
to the astronomy literature. The nature of astro-
nomical research, on the other hand, often involves
cross-disciplinary insights due to universally ap-
plicable physical processes. When well-curated,
LLMs could meaningfully assist with this effort,
such as through hypothesis generation.

Existing scales based on in-context prompting
and instruction learning, primarily involving GPT-
4, have already demonstrated significant potential
for generating substantive hypotheses (Ciucă and
Ting, 2023; Ciucă et al., 2023). Further, the as-
tronomy community’s “open sky” policy, which
grants public access to the majority of its datasets
either immediately or after a brief proprietary pe-
riod (Almeida et al., 2023; Fabricius et al., 2021),
pairs well with the wealth of resources available
in archives like NASA’s Astrophysics Data System
(Accomazzi et al., 2015; Borgman and Wofford,
2021). Such an open-access policy can facilitate
deep engagement with the astronomical literature.

Despite their general capabilities, LLMs fre-
quently lag behind specialized, smaller models in
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domain-specific applications. This disparity stems
from two primary factors: (i) the eclectic nature of
the pre-training datasets, which dilutes the focus on
specialized subjects in favor of general predictive
performance, and (ii) the design ethos of LLMs
as “foundation models” aimed at subsequent fine-
tuning tailored to specific tasks. The existing land-
scape for LLMs in astronomy remains limited, how-
ever. To our knowledge, the only specialized model
is astroBERT (Grezes et al., 2021), which has 110
million parameters, fine-tuned on nearly 400,000
ADS papers. As an non-generative model, how-
ever, astroBERT’s utility remains primarily limited
to discriminative tasks.

Motivated by these gaps, we present AstroL-
LaMA, a state-of-the-art generative language
model fine-tuned from LLaMA-2. Our model lever-
ages a corpus of 300,000 astronomy abstracts from
arXiv and boasts an architecture approximately 67
times larger than that of astroBERT. AstroLLaMA
aspires to build upon astroBERT’s foundation by
offering more improved performance in generating
specialized information and broader fine-tuning op-
portunities for astronomical research. We describe
our methodology in Sec. 2, provide some evalua-
tion results in Sec. 3, and finally concluding with
some remarks in Sec. 4.

2 AstroLLaMA

In this section, we discuss AstroLLaMA’s imple-
mentation, focusing on the curation of its dataset,
base model architecture, and fine-tuning settings.

2.1 Dataset
We derive our dataset from the arXiv repository,
available on Kaggle.a Our curated subset focuses
on papers classified under the astrophysics category
(astro-ph), resulting in a collection of 326,238
articles spanning from April 1992 to July 2023.
We extract these papers’ abstracts to form a corpus
consisting of approximately 95 million tokens. The
median length of these abstracts is 291 tokens. To
enable effective model evaluation, we randomly
designate 20% of this curated dataset for testing.

2.2 Base model
Our base model is LLaMA-2, a 6.7 billion-
parameter model developed by Meta (Meta, 2023).
Originally pre-trained on a corpus containing 2 tril-
lion tokens, LLaMA-2 features a context window

ahttps://www.kaggle.com/Cornell-University/
arxiv
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Figure 1: Learning curve of AstroLLaMA during its
fine-tuning on the arXiv astrophysics dataset. The fig-
ure tracks the evolution of perplexity, a measure of the
model’s next-token prediction performance. The light
blue curve shows the training perplexity after each pa-
rameter update step, while the dark black curve provides
a smoothed average of the same metric taken over every
10-step interval.

of 4,096 tokens. For tokenization, the model em-
ploys a bytepair encoding strategy (Sennrich et al.,
2016; Kudo and Richardson, 2018), with a vocabu-
lary of 32,000 unique tokens.

2.3 Fine-tuning settings

We rely on our curated training set, which includes
77 million tokens. The setting of the fine-tuning
phase largely follows from Meta (2023). First, spe-
cial [BOS] (Beginning Of Sequence) and [EOS]
(End Of Sequence) tokens are prepended and ap-
pended to each training sequence. These sequences
are then concatenated and divided into fixed-length
chunks, each comprising 512 tokens.

We follow the causal language modeling ob-
jective employed during the model’s pre-training
phase, where the the next token is to be predicted
using its preceding context. We use the AdamW
optimizer (Loshchilov and Hutter, 2018) with hy-
perparameters β1 = 0.9, β2 = 0.95, ϵ = 10−5 and
a batch size of 32. The learning rate follows a co-
sine schedule with a linear warmup to a peak value
of 3 × 10−4 in the first 10% of the optimization
steps and a final learning rate of 10% of its peak.
Additional settings include weight decay and gra-
dient clipping values of 0.1 and 1.0, respectively.
Note that these hyperparameters are set according
to LLaMA-2’s pre-training phase.

We fine-tune LLaMA over nearly three epochs,
corresponding to about 230 million processed
tokens, using four NVIDIA A100 GPUs each
equipped with 40GB of VRAM. To achieve re-
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The Magellanic Stream (MS) - an enormous ribbon of gas spanning 140∘ of the southern sky 
trailing the Magellanic Clouds - has been exquisitely mapped in the five decades since its 
discovery. However, despite concerted efforts, no stellar counterpart to the MS has been 
conclusively identified. This stellar stream would reveal the distance and 6D kinematics of the MS, 
constraining its formation and the past orbital history of the Clouds. We have been conducting a 
spectroscopic survey of the most distant and luminous red giant stars in the Galactic outskirts. From 
this dataset, we have discovered a prominent population of 13 stars matching the extreme angular 
momentum of the Clouds, spanning up to 100∘ along the MS at distances of 60−120 kpc. 
Furthermore, these kinemetically-selected stars lie along a [α/Fe]-deficient track in chemical space 
from −2.5<[Fe/H]<−0.5, consistent with their formation in the Clouds themselves. We identify 
these stars as high-confidence members of the Magellanic Stellar Stream. Half of these stars are 
metal-rich and closely follow the gaseous MS, whereas the other half are more scattered and metal-
poor. We argue that the metal-rich stream is the recently-formed tidal counterpart to the MS, and 
speculate that the metal-poor population was thrown out of the SMC outskirts during an earlier 
interaction between the Clouds. The Magellanic Stellar Stream provides a strong set of constraints - 
distances, 6D kinematics, and birth locations - that will guide future simulations towards unveiling 
the detailed history of the Clouds. 

The Magellanic Stream (MS) - an enormous ribbon of gas spanning 140∘ of the southern
sky trailing the Magellanic Clouds - has been exquisitely mapped in the five decades since
its discovery. However, despite concerted efforts, no stellar counterpart to the MS has been
conclusively identified. This stellar stream would reveal the distance and 6D kinematics of
the MS, constraining its formation and the past orbital history of the Clouds. We propose a 
novel approach to search for the elusive stellar counterpart of the Magellanic Stream. By 
employing advanced photometric and spectroscopic techniques, combined with state-of-
the-art data mining and machine learning algorithms, we aim to systematically analyze and 
cross-reference multi-wavelength survey data to identify potential candidate stars 
belonging to the hypothesized stellar stream. Our methodology involves leveraging the 
distinctive chemical signatures and proper motions associated with stars originating from 
the Magellanic Clouds, allowing us to differentiate them from the foreground and 
background contaminants. If successful, this discovery would not only provide essential 
insights into the origin and evolution of the Magellanic Stream, but also enhance our 
understanding of the interaction between the Magellanic Clouds and the Milky Way. 
Furthermore, the proposed approach establishes a powerful framework for investigating 
other unresolved galactic structures and tracing their underlying dynamical histories.

The Magellanic Stream (MS) - an enormous ribbon of gas spanning 140∘ of the southern sky trailing the Magellanic Clouds - has
been exquisitely mapped in the five decades since its discovery. However, despite concerted efforts, no stellar counterpart to the MS
has been conclusively identified. This stellar stream would reveal the distance and 6D kinematics of the MS, constraining its
formation and the past orbital history of the Clouds. We 1) present a new method to select MS candidate stars from wide field 
optical imaging, 2) apply this method to the MS, 3) compare the results to existing catalogs, and 4) identify the most promising MS 
candidate stars. We apply our method to 2547 stars in the Gaia EDR3 catalog that have Gaia proper motions consistent with the MS 
and use these as a pilot sample to optimize our method. We then apply our method to the entire Gaia EDR3 catalog to identify 
46,000 stars that are candidates for the MS, and we use the Gaia-ESO Survey to identify 13,000 of these stars that are likely to be 
MS candidates. We identify 266 stars with (G-K) colours and [Fe/H] that are consistent with previous estimates of the MS. These 
stars have proper motions and radial velocities that are consistent with the MS, and we place them on a 3D map of the MS. We find 
a previously unknown stellar stream, which we call the Southeastern Stream (SES), in the direction of the Clouds and MS. The SES 
has an M31 distance of 32.2+/-0.5 kpc and a 6D velocity of 136+/-10 km/s. The SES is about 20 times brighter in stars than the MS 
and about 40 times brighter in stars than the SMC. The SES is also 2.7 times more metal-rich than the MS, which suggests that it is 
a separate population. 

The Magellanic Stream (MS) - an enormous ribbon of gas 
spanning 140∘ of the southern sky trailing the Magellanic
Clouds - has been exquisitely mapped in the five decades 
since its discovery. However, despite concerted efforts, no 
stellar counterpart to the MS has been conclusively 
identified. This stellar stream would reveal the distance and 
6D kinematics of the MS, constraining its formation and 
the past orbital history of the Clouds. We find a stellar 
stream in the MS, with a 6D velocity of 100 km s−1, and a 
distance of 100 kpc. The stream is 100 pc wide and 1000 
pc long, and is consistent with the MS. The stream is 1000 
times more massive than the Magellanic Clouds, and is 
likely to be a tidal stream from the Large Magellanic 
Cloud.

Original abstract Completed by GPT-4

Completed by LLaMA-2 Completed by AstroLLaMA

Figure 2: Completion of an astronomy abstract from the arXiv database (ID: 2306.15719) using three different
models: GPT-4, LLaMA-2, and AstroLLaMA. Each model is prompted with the same short text snippet, highlighted
in their respective boxes, and then produces the rest of the abstract. Two authors of this paper subsequently judge
the quality of each completed abstract. GPT-4 tends to produce over-generic statements, while LLaMA-2 often
gives off-topic generations. AstroLLaMA demonstrates the most robust completion, offering more relevant concepts
and deeper insights specific to the field of astronomy, thus significantly outperforming LLaMA-2 and GPT-4.

source efficiency, we employ 4-bit quantization of
the model’s parameters and utilize LoRA, a fine-
tuning technique based on low-rank matrix decom-
position (Hu et al., 2021). Specifically, we set
LoRA’s hyperparameters α and dropout rate to 32
and 0.05, respectively. This process is implemented
using Hugging Face’s library in Python.

2.4 Fine-tuning evaluation

Fig. 1 depicts the performance of AstroLLaMA
during its fine-tuning phase. Here, we present per-
plexity, a commonly used metric for evaluating
causal language models. Perplexity is defined as
the exponentiation of the training loss, with lower
values indicating a better fit.

Our initial observations reveal that LLaMA-2
performs suboptimally on our dataset, with an av-
erage perplexity close to 10. By the conclusion of
three epochs, AstroLLaMA achieves an average
perplexity of 6.55. This represents a 32.5% reduc-
tion in perplexity compared to the base LLaMA-2
model, signifying a substantial improvement in the
model’s new-token prediction accuracy. Consider-
ing LLaMA-2 as a strong pre-trained baseline for
language modeling, we believe this performance
improvement is substantial in this application.

3 Results

As illustrated in the previous section, AstroLLaMA
outperforms its pre-trained counterpart, LLaMA-2,
in terms of context-awareness during token predic-
tion within astronomy abstracts. To delve deeper
into the advantages of fine-tuning, we assess As-
troLLaMA’s general abilities in two key aspects:
text generation and embedding space quality. We
compare its performance against multiple models,
including LLaMA-2, GPT-4 and GPT-3 (ada-002)
to provide a comprehensive evaluation.

3.1 Text generation

We task AstroLLaMA, LLaMA-2 and GPT-4 with
completing a number of astronomy abstracts, al-
lowing us to gauge their ability to comprehend the
context and generate a meaningful continuation.
Fig. 2 presents an example. In particular, we give
each model the first few sentences of an abstract as
a prompt and use that model to generate the rest of
the abstract. For GPT-4, we utilize ChatGPT and
instruct it to limit the completion to a single para-
graph. AstroLLaMA and LLaMA-2 are deployed
using standard sampling methods, with the temper-
ature set to 0.3 and a maximum new tokens limit of
1,024. We find that altering the temperature setting
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does not substantively improve LLaMA-2’s results.
Our observations on all generated abstracts

largely echo the patterns depicted in Fig. 2.
LLaMA-2 frequently deviates from the intended
context after generating only a short and often
off-topic continuation, resulting in inferior com-
pletions. While GPT-4 produces more coherent
text, its responses are too generic to capture the
nuanced understanding required in the astronomy
domain. Even when explicitly prompted to focus
on astronomy-related topics, GPT-4’s generated
text remains largely off-target or generically appli-
cable rather than domain-specific.

In stark contrast, AstroLLaMA exhibits remark-
able context-awareness in its completions by show-
ing a deep understanding of astronomical concepts.
In Fig. 2, for example, AstroLLaMA comprehends
that an effective search for stars in the Magellanic
Stream involves a three-step process: initial wide-
field imaging, followed by refinement using astro-
metric data from Gaia, and then further curation
with spectroscopic data. The model also under-
stands Gaia-ESO is surveying the southern sky
and hence can observe (part of) the Magellanic
Stream. It also demonstrates nuanced knowledge
of the Magellanic Stream, understanding the impor-
tance of bifurcation within the stream. As a result,
it appropriately completes the text by discussing
the southeast stream and exploring metallicity dif-
ferences to ascertain their origins.

3.2 Embedding space quality

We assess models’ ability to reflect semantic sim-
ilarities among astronomy texts. We randomly
choose 10,000 abstracts from our dataset and em-
bed them using AstroLLaMA and GPT-3. Specif-
ically, we use OpenAI’s API to invoke the text
embedding function for GPT-3 (ada-002). To get
text embeddings from AstroLLaMA, we pass an
input through the model and extract its final hidden
states, which contain embeddings for all tokens in
the input. Then, we omit the [BOS] token and take
the average of all other tokens’ embeddings to get
the final result. For each pair of abstracts we cal-
culate their cosine similarity (the normalized dot
product) between on their vector embeddings.

The top panel of Fig. 3 presents the distribution
of these pairwise similarities for the two embed-
ding methods. We find that the embeddings by
GPT-3 are overly generic with similarities cluster-
ing around relatively high values of 0.7–0.9, sug-
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Paper 1: Astrophysical gyrokinetics: kinetic and fluid turbulent cascades  
               in magnetized weakly collisional plasma 
Paper 2: Comment on modified Coulomb law in a strongly magnetised vaccum 
GPT-3 cosine similarity score: 78.5% 
AstroLLaMA cosine similarity score: 36.3% 
 
Paper 1: A Spitzer census of the IC 348 nebula 
Paper 2: Sequential and spontaneous star formation around the mid-infrared 
               halo HII region KR 14 
GPT-3 cosine similarity score: 82.4% 
AstroLLaMA cosine similarity score: 92.8%

Figure 3: Top: Distribution of pairwise cosine similari-
ties among 10,000 randomly selected abstracts from our
corpus, divided into 10 equal bins based on similarity
levels from GPT-3. Bottom: Two representative exam-
ples illustrating divergent cosine similarity values when
comparing AstroLLaMA and GPT-3 embeddings.

gesting a lack of discriminative power (most papers
are embedded very similarly). AstroLLaMA’s em-
beddings, on the other hand, exhibit much higher
variance within each bin. This suggests that our
fine-tuned model is more adept at representing the
specialized semantic variance inherent to the field
of astronomy, which may enable a more granu-
lar representation of astronomical content and can
facilitate higher-quality document retrieval and se-
mantic analysis.

The bottom panel of Fig. 3 provides two repre-
sentative examples where AstroLLaMA and GPT-3
classifications diverge. In the first example, GPT-3
fixates on the keyword “magnetized,” resulting in
an inflated similarity score despite the contents be-
ing markedly different. AstroLLaMA, on the other
hand, successfully distinguishes between these dis-
parate contexts. In the second example, AstroL-
LaMA accurately identifies that the study of Spitzer
is closely related to star formation. GPT-3, how-
ever, fails to make this connection due to the ab-
sence of matching keywords.

4 Conclusion

In this work, we introduce AstroLLaMA, a 7-
billion-parameter language model fine-tuned on a
dataset encompassing over 300,000 abstracts from
astronomical research papers. Compared to its
base model, LLaMA-2, and even GPT-4, a cur-
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rent state-of-the-art general LLM, AstroLLaMA
exhibits marked improvements in generating high-
quality abstracts and a competent grasp of relevant
information in this specialized literature.

The efficacy of AstroLLaMA demonstrated in
this paper suggests a multitude of avenues wor-
thy of exploration for subsequent work. With
well-curated instruction datasets, researchers can
fine-tune our model to perform tasks such as ques-
tion answering, scientific paper summarization and
academic writing assistance. Combining AstroL-
LaMA with other information retrieval models can
lead to promising systems for hypothesis genera-
tion. Finally, AstroLLaMA is a potential candidate
to be incorporated into specialized multi-modal
models (Liu et al., 2023), going beyond the limits
of text in astronomical research.

AstroLLaMA, nevertheless, is not without lim-
itations. During its evaluation, the most salient
drawback we find is the model’s knowledge gaps in
certain areas of astronomy. In Fig. 2, for example,
AstroLLaMA’s estimation of potential star candi-
dates from Gaia-ESO data is notably inaccurate.
Another concern lies in the model’s tendency to
generate hallucinated or fictitious numerical data,
an issue most likely attributed to our simple focus
on next-token prediction—a pure NLP objective—
rather than explicitly steering the model toward
factual accuracy. Achieving a desirable balance of
“faithfulness” (respecting scientific evidence and
accuracy) and “creativity” (being able to come up
with interesting hypotheses) remains an open chal-
lenge in research at the intersection of generative
models and other scientific disciplines.

There are a number of on-going efforts to ad-
dress the limitations of AstroLLaMA as well as
explore its broad capabilities in this sphere. We are
in the process of enriching AstroLLaMA’s train-
ing data by including each paper’s full LaTeX
sources, going beyond its abstracts and thereby
increasing the token count by approximately two
orders of magnitude. Although this requires a non-
trivial data quality control procedure, it will almost
certainly improve our model’s predictive perfor-
mance substantially, making it even more adapted
to this literature and less prone to hallucination.
A more systematic evaluation of AstroLLaMA—
including a larger set of candidate abstracts for
completion, a more well-defined evaluation scheme
and a larger, more diverse set of judging experts—
will lead to more grounded comparison with state-

of-the-art models. Finally, the potential of AstroL-
LaMA to generate high-quality and creative hy-
potheses through novel prompting and fine-tuning
techniques is being extensively studied.

AstroLLaMA stands as a compelling prototype
for specialized LLMs in astronomy, showing supe-
rior context-aware capabilities compared to GPT-
4 despite having much fewer parameters. Our
methodology is simple and general enough for re-
searcher to explore even more specific areas of
astrophysics or even to be adapted to other areas of
scientific research.

We have made AstroLLaMA’s weights, training
data and code for reproducibility publicly available
to researchers who are aiming to leverage LLMs
for astronomy-centric applications. Along with
this, we are establishing various “playgrounds” on
Hugging Face to invite interested readers to ex-
plore AstroLLaMA and further refine this robust
starting point for a variety of relevant downstream
applications.b
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Abstract

Machine Learning models in the field of Infor-
mation Extraction for Scientific Publications
require high-quality labeled data. The large
amount of easily accessible LATEX source code
is a treasure trove of high-quality labeled data.
However, existing datasets comprised of docu-
ment collections and PDF extraction tools have
limitations: (1) The hierarchical structure of
papers is lost because labeling is done in terms
of pages rather than documents; (2) The read-
ing order is not extracted, which potentially
muddles the extracted contextual structure; (3)
Papers included in the datasets are not likely
to be up-to-date.To address these challenges,
we propose LATEX Rainbow, a framework that
bridges LATEX to PDF that can automatically an-
notate and extract semantic and layout informa-
tion from LATEX source code. This framework
extends existing annotation methods by taking
into account the properties of different existing
approaches. It can produce token-level seman-
tic structure annotations, preserve the paper’s
reading order, and extract the table of contents,
i.e., the article’s section structure. LATEX Rain-
bow enables anyone to extend their datasets
with the latest documents. The project is open-
sourced on GitHub1 for community contribu-
tions and use.

1 Introduction

Scientific publications are often delivered in a form
that is unstructured from the perspective of the un-
derlying data, notably layout-focused formats such
as PDFs.These formats, while visually appealing
and optimized for human comprehension, present
significant challenges when it comes to automatic
Information Extraction (IE). For example, it is dif-
ficult for PDF extraction software to distinguish
which part of a PDF page constitute the actual con-
tents of the paper as opposed to other elements
such as headers, metadata, author and affiliation

1https://github.com/InsightsNet/texannotate

etc. and multimodal contents such as images, ta-
bles, equations etc. and their captions (Meuschke
et al., 2023; Bast and Korzen, 2017). Addition-
ally, these documents often contain elements that
are not directly related to the core content, such as
watermarks (Chia et al., 2018), publisher details
and header information that serves navigation in
collections. These elements, often introduced by
the publishing process, further complicate the ex-
traction process as they are not semantically linked
to the main content. They appear within the layout
of the page, but are hard to distinguish from the
paper contents.

In order to solve these problems, there has been
a surge in the development of document under-
standing machine learning models over the past
few years (Cui, 2021; Subramani et al., 2021; Han
et al., 2023). These models are designed to delve
deep into documents, extracting semantic infor-
mation by harnessing both their visual and tex-
tual attributes. However, machine learning, be-
ing a data-driven approach, requires extensive la-
beled data. Considering that existing PDF extrac-
tion tools cannot guarantee the accuracy of the ex-
traction (Meuschke et al., 2023). In this context,
LATEX code has emerged as a valuable resource.
Many of the weakly supervised annotated docu-
ment IE datasets have their genesis in LATEX code
(Li et al., 2020b; Schmitt-Koopmann et al., 2022;
Anitei et al., 2023).

LATEX is a typesetting system commonly used for
scientific publication, and LATEX code can be easily
compiled into PDF format. The explicit markup in
LATEX code describes the structure and formatting
of the document.Given that scientific publications
inherently maintain a hierarchical and semantic
structure, such as sections, subsections, figures, ta-
bles, equations, etc. These elements are all clearly
defined within LATEX commands. This clarity facil-
itates automatic annotation systems in identifying
and categorizing document elements, as they are al-
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Figure 1: Process of document annotation and extraction. In this figure example, a paper (Cohen et al., 2016) from
arXiv is annotated by color and have been extracted with the semantic layout label for each token.

ready explicitly delineated and classified by the au-
thor’s markup (Ogawa, 1994). The author’s intent
can be inferred more effectively from the structural
and semantic cues within LATEX code, leading to a
more accurate and context-aware interpretation of
the document. With the increasing release of scien-
tific publications in LATEX source code, particularly
on arXiv2, there has been a surge in the number
of PDF Information Extraction datasets derived
from LATEX. These datasets predominantly utilize
LATEX coloring features, namely colored fonts or
drawing of colored boxes within the PDF. However,
there are notable shortcomings in the current PDF
Information Extraction datasets. One of the key
issues is that current annotations are often made on
a per page basis, and no popular datasets explicitly
annotate whether an element spanning two pages
belongs to the same entity, e.g. a paragraph or item-
ized list. As a result, an element spanning across
multiple pages might be interpreted as two distinct
entities instead of one continuous element. This dis-
crepancy also affects the hierarchical structure of
scientific publications. Consider that document dig-
itization standards, including Journal Article Tag
Suite (JATS)3 and Text Encoding Initiative (TEI)4

provide definitions of section trees, which are ben-
eficial to IE (Kikuchi et al., 2014; Hu et al., 2022;
Landolsi et al., 2023). It would be a shame to lose

2https://info.arxiv.org/help/submit/index.html
3https://jats.nlm.nih.gov/articleauthoring/

tag-library/1.3/element/sec.html
4https://tei-c.org/release/doc/tei-p5-doc/en/

html/ref-tree.html

the hierarchy.
Additionally, recent models and datasets derived

from LATEX often omit reading order details (Li
et al., 2020b; Blecher et al., 2023). LATEX is a
complex ecosystem with a vast collection of pack-
ages filled with numerous command definitions
via Comprehensive TeX Archive Network (CTAN).
Various templates each have their own unique writ-
ing conventions. This leads to the possibility that
some elements may be mislabeled. Given that dif-
ferent publications adopt varied page layouts and
LATEX autonomously determines the positioning of
tables and figures based on its internal rules (Mit-
telbach et al., 2004), there’s a significant risk that
automated information extraction tools might mis-
interpret the intended reading order and context.

Moreover, authors of such resources do not al-
ways publish the code used in compiling the dataset.
This means that current datasets are unlikely to in-
corporate the most recent papers or newer version
of old papers. This hampers reproducibility of the
process of dataset building as well as impeding scal-
ability. Meanwhile, it is difficult for users to modify
the annotation style to match their demands.

In this paper, we build upon several approaches
for automatic PDF annotation of datasets and
introduce a generalized framework that yields
document-oriented, fine-grained, reading-ordered
annotations that exclude extraneous content based
on LATEX source code. Figure 1 is a simplified rep-
resentation of the labeling process. Our framework
improves the accuracy and robustness of IE for
scientific publications that has LATEX code. Further-
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more, we believe the new annotated data comes
from our framework could drive more accurate IE
machine learning models for PDF only papers, i.e.
scanned paper. Our contributions are:

1. Our framework refine the categories, per doc-
ument based reading order and hierarchy
through a well-designed coloring strategy.

2. Enhancing code parsing capabilities by invok-
ing the parsing databases of modern LATEX
integrated writing environment.

3. Providing CSV tables output per PDF docu-
ment, easily modifiable to meet user needs.

This framework is free software and available under
the Apache 2.0 license.

2 Related Work

2.1 PDF Information Extraction Softwares
Currently there are many software solutions or ser-
vices that provide PDF content extraction func-
tions. Adobe Extract5 and Apache Tika6 provide
API service to extract texts from PDF, but they
do not provide fine-grained labeling. Camelot7

and Tabula8 focus on table extraction. RefExtract9

specializes in extracting references. CERMINE
(Tkaczyk et al., 2015), GROBID 10 PdfAct11 and
Science Parse12 support the identification of more
categories. PyMuPDF13 allows access to informa-
tion about the more underlying details of the PDF
file. However, a benchmark demonstrates their im-
perfect performance (Meuschke et al., 2023).

2.2 Document Datasets
Many of the datasets’ annotation were taken from
LATEX. TableBank (Li et al., 2020a) specialize in
table extraction. DocBank (Li et al., 2020b) ex-
tended from TableBank, provides token-level fine-
grained categories labeling. FormulaNet (Schmitt-
Koopmann et al., 2022) and IBEM (Anitei et al.,
2023) focus on mathematical formulas, especially
in-line formulas, which can easily be confused with

5https://www.adobe.io/apis/documentcloud/
dcsdk/pdf-extract.html

6https://tika.apache.org/
7https://github.com/camelot-dev/camelot
8https://github.com/chezou/tabula-py
9https://github.com/inspirehep/refextract

10https://github.com/kermitt2/grobid
11https://github.com/ad-freiburg/pdfact
12https://github.com/allenai/science-parse
13https://github.com/pymupdf/PyMuPDF

plain-texts. SciBank (Grijalva et al., 2022) pro-
duces block-level annotations.

There are also many datasets from non-LATEX
sources. PubLayNet (Zhong et al., 2019) and Do-
cLayNet (Pfitzmann et al., 2022) obtained particu-
larly large amounts of labeling using automated and
manual methods, respectively. XFUND (Xu et al.,
2022) manually labeled multilingual tabular data.
ReadingBank (Wang et al., 2021) is extracted from
Microsoft Word documents, which standardize the
reading order of blocks within a page. M6Doc
(Cheng et al., 2023) extracted large-scale data us-
ing a half machine learning, half manual approach.

2.3 Document Understanding Models

With the gradual enrichment of document data IE
resources, machine learning model development
is driven by increasingly larger datasets using dif-
ferent approaches. LayoutLMs (Xu et al., 2020,
2021a,b; Huang et al., 2022) and its variants (Shen
et al., 2022), make it possible to analyze document
layout from the 2D coordinates of texts plus visual
features. Donut (Kim et al., 2022), on the other
hand, changes the structure of model to a sepa-
rate visual encoder and language model decoder
without obtaining texts directly from the document.
Nougat (Blecher et al., 2023) follows Donut in im-
plementing PDF to markup language conversion.
However, Nougat’s approach is page-based, and
cross-page paragraphs may be incorrectly sliced by
figures or tables on a page. With the explosion of
Large Language Models (LLM), a number of on-
line document understanding systems have sprung
up, such as Explainpaper14 and OpenRead15, but
these platforms are commercial and closed-source.
In this paper we present a framework that is freely
available and can support the community to en-
hance the open-source approach.

3 Methodology

We present a five-step approach to annotate the
LATEX code to PDF annotation. (1) Initially, the
PDF file is processed the existing font colors and
shapes in the file are captured. (2) Subsequently,
the corresponding LATEX source code of the PDF
is parsed. Each token within the file is assigned a
distinct color. Furthermore, figures within the doc-
ument are enclosed within borderless rectangles
and are highlighted with unique background colors.

14https://www.explainpaper.com/
15https://www.openread.academy/
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These specific colors act as pointers to the respec-
tive segments of the LATEX source code, ensuring
traceability. (3) Upon completing the LATEX pars-
ing, the source code is compiled into a color-coded
PDF. (4) The framework then aligns text and fig-
ures from the PDF document with their respective
segments in the LATEX source code by color. This
alignment facilitates the extraction of semantic an-
notations and coordinates of each token and the
establishment of a hierarchical structure through-
out the document. (5) Finally, we packaged all the
annotation as CSV files.

In order to complete these steps, the framework
needs three functions: PDF Element and Color
Extraction, Color Generation and Annotation, and
PDF Compilation. The subsequent sections pro-
vide the implementation of each function in detail.

3.1 Element and Color Extraction from PDF
In this function we use an off-the-shelf Python
package pdfplumber16 to read the details inside
the PDF file. This tool is proficient in pinpoint-
ing the position, font, and color of every character
on a page. Additionally, it can determine the po-
sition and color attributes of all rectangles on the
page, which encompasses both border and fill col-
ors. By default, pdfplumber utilizes DeviceRGB
color space, extracting colors as tuples of three
floating-point numbers. For example, the color
black is represented as (0.0, 0.0, 0.0) while red is
(1.0, 0.0, 0.0). However, modern computer lan-
guages, sometimes struggle with accurately storing
and accessing floating-point numbers. This inher-
ent inaccuracy implies that color matching based
on these numbers might be prone to errors, stem-
ming from cumulative inaccuracies.

In our framework, colors for fonts are repre-
sented as tuples of 8-bit values, namely red is rep-
resented as (255, 0, 0) or #ff00000 in hexadecimal.
When pdfplumber extracts colors from PDF doc-
ument, each tuple element value is incremented
in steps of 0.00392, for instance, 8-bit (0, 1, 2)
translates to floating-point (0.0, 0.00392, 0.00784).
Given that 1

255 = 0.00392156862, we are already
dealing with a discrepancy. To mitigate this threat,
we employed matplotlib’s to_hex()17 method to
ensure precise floating-point to 8-bit RGB value
matches. We also provide details in the selection
of tools for extracting color in Appendix A.

16https://github.com/jsvine/pdfplumber
17https://matplotlib.org/stable/api/_as_gen/

matplotlib.colors.to_hex.html

3.2 Colors Generation and Annotation
In this function, we process the LATEX source code
to determine color assignments for each element.
Ideally, each element should have a unique color.
A straightforward approach would be to incremen-
tally assign hexadecimal numbers from #000000
to #ffffff. However in practice we have found that
such an increment leads to a very insignificant color
change. For instance, the token gradually changes
from black #000000 to a blue shade almost indistin-
guishable from black #000001, then #000002, until
it reaches full blue #0000ff. This makes neigh-
boring tokens almost the same color, and distin-
guishing between them can be challenging for both
computer displays and humans eyes.

To enhance visibility and facilitate manual error-
checking, we adopted a hue-based color generation
strategy. More specifically, we use the Hue, Satura-
tion, Value (HSV) color space to cyclically extract
colors and rearrange them into appropriate groups.
Each HSV color is then converted to an RGB tuple.
Finally, around 9 million colors were grouped and
sorted to be used in the next step of color marking.

For every recognized token, it gets substituted
with:

{\color[RGB]{0,0,1}<TOKEN>}

Where <token> is the token to be colored. Each
identified figure is replaced with:

\colorbox[rgb]{0,0,1}{<FIGURE>}

Where <FIGURE> is the command of including the
figure file, or the block of drawing a figure. Distinct
colors are allocated to each segment.

We also insert rules that ensure the required pack-
ages are imported and any rectangle placed beneath
an figure does not disrupt the document’s original
layout.

\usepackage{xcolor}
\usepackage{tcolorbox}
\setlength { \fboxsep }{ 0pt }
\setlength { \fboxrule }{ 0pt }

Next we need to parse LATEX source code and
apply the above annotation rules to them.

3.2.1 LATEX Parsing and Annotation
Broadly, elements in LATEX source code comprises
four classes: body text, macro, environment, and
comments. We have the following parsing strate-
gies for each of these elements.
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• Body text segment undergoes tokenization
using spaCy18 tokenizer in order to split punc-
tuation correctly. We track of the number
of space characters after each token to main-
tain the integrity the original PDF page layout.
Each token is color-marked and recorded.

• Macro begins with a backslash, and its argu-
ments are encompassed within braces. We
focus on labeling certain macros such as
\title{} and \author{}, attributing their
parameter literals with relevant semantic struc-
ture labels. Arguments within the curly
braces will be parsed as body text if it
will appear in the compiled PDF. Notably,
\includegraphics{} will be treated as a
whole and marked with a colorful borderless
rectangle, as it is an inserted figure without
fonts. \input{} and \include{} will point
to another source code file, and we recursively
parse the contents of the file.

• Environment consists of entities encap-
sulated between start and end commands.
Elements within a environment are recursively
parsed as macro or body text. For example,
\begin{table}...\end{table} is a table
environment and the elements within this table
element such as \caption{} will be parsed
as macro. Specifically, drawing environment
\begin{tikzpicture}...\end{tikzpicture}
will be treated as a whole block and marked
with a colorful borderless rectangle. Note
that only elements within the document
environment are colored.

• Comment element starts with a percent sign
% and continues until the end of this line in the
LATEX source code. We ignore the annotation
of comment as it does not affect any part of
the compiled PDF.

We employ the Python package pylatexenc19

to traverse and parse the LATEX source code, charac-
ter by character. pylatexenc contains a collection
of commands created by the contributors, which
defines: the name of commands; whether the com-
mand has a variant or not e.g. \section{} and
\section*{}; and the number of command ar-
guments, including optional arguments in square
brackets and required arguments in curly braces.

18https://spacy.io/
19https://github.com/phfaist/pylatexenc

In practice, we found these predefined rules in-
sufficient, prompting us to manually augment the
definition file.

However, as the number of parsed source codes
increases, the trend of newly encountered unde-
fined commands does not stop. We introduced
the parsing database from LaTeX Workshop20 and
TeXstudio21 in order to extend our database of
parsing rules once and for all. LaTeX Workshop is
an extension for a popular code editor Visual Stu-
dio Code22, aiming to provide all-in-one features
and utilities for LATEX typesetting. TeXstudio is an
integrated writing environment for creating LATEX
documents. They are featured by a particularly
complete database of automatically generated com-
mands from CTAN. We implemented the method
to download all the definitions from the repository
in JSON format. They are stored on a package-
by-package basis, i.e., each package that can be
referenced by LATEX with \usepackage{} has a
corresponding JSON file that contains all the com-
mands for the package, including macros and envi-
ronments. Our parser first traverses through LATEX
source code, collects all package loads, and then
reads the relevant JSON entries. These commands
are subsequently transformed and integrated into
the parsing rules for pylatexenc.

Next, we allocate each color the semantic layout
label to which it belongs. The set of labels aligns
with those used in GROBID and DocBank:

• Abstract is assigned to body texts within
abstract environment, or argument of macro
\abstract{} and its variants.

• Author is assigned to argument of macro
\author[]{}, \address{} and their variants.

• Caption is assigned to macro \caption{}
within table or figure environment.

• Equation is assigned to all the element
that marked with mathematical mode by
pylatexenc.

• Figure is assigned to drawings or imported
figures.

• List is assigned to body texts within itemize
or enumerate environment.

20https://github.com/James-Yu/LaTeX-Workshop
21https://www.texstudio.org/
22https://code.visualstudio.com/
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• Paragraph is assigned to body texts within
document environment.

• Reference is assigned to body texts within
bibliography environment, or macro
\bibliography{}.

• Section is assigned to macros that indicate a
new section in command.

• Table is assigned to environments that include
tabular in command.

• Title is assigned to argument of macro
\title[]{} and its variants.

With the annotations in place, the LATEX source
code is ready for compilation. Following this,
pdfplumber could determine the color and posi-
tion of each letter, utilizing the letter’s color to
match the corresponding annotation.

Simultaneously, the article’s hierarchical struc-
ture is encapsulated within a tree data structure.
LATEX delineates a hierarchy spanning seven levels
through its macro command23. We record for each
colored element the node of the tree it belongs to.
To ensure a coherent hierarchy, we additionally de-
fine the paper title as the root level of document.
That is, all tokens in the title of a scientific paper
belong to Title node, while all tokens in the Intro-
duction section belong to the Introduction node,
and Introduction node is a child of Title node in the
tree of this document. In addition we discuss the
argument of hierarchical structure in Appendix B.

3.3 PDF Compilation
To initiate PDF Compilation process, two specific
lines of code are added to the beginning of the
source file: \pdfoutput=1 instructs the compiler
to produce a PDF instead of PostScript, an alter-
native publication format; \interactionmode=1
signals the compiler to persist with the output gen-
eration, even if it encounters an error on a page.

Publications that accept submissions in LATEX
format, including arXiv, often recommend using
pdftex as their preferred rendering engine. This
engine is integrated into the contemporary LATEX
distribution, TeXLive. Given the complexities in
setting up this distribution, we opted for the Docker
image24 of TeXLive 2023 to establish our compila-
tion environment.

23https://www.overleaf.com/learn/latex/
Sections_and_chapters

24https://hub.docker.com/r/texlive/texlive

Automated LATEX compilation presents a chal-
lenge, especially in pinpointing the master source
file. This is because LATEX allows for multiple .tex
source files to be consolidated and compiled into
one overarching master PDF. To navigate this chal-
lenge, we integrated arXiv’s AutoTeX25 automatic
compilation system. AutoTeX, a Perl-based toolkit,
excels at discerning the primary source file within a
project. Our PDF compilation mechanism derives
some of its functionalities from an open-source
AutoTeX wrapper26.

However, during our practice, we observed Au-
toTeX’s compilation regulations as overly stringent.
There were instances when it halted the compila-
tion due to minor errors, even when the same con-
tent had successfully passed arXiv’s publication
standards. Specifically, AutoTeX will stop com-
piling and try other compilers immediately after
the compiler returns an error code, even if the ig-
nored error signal placed in front of the compiler
to successfully output the compiled PDF file. The
PDF file produced in this step is wrong because
of the BibTeX mechanism. BibTeX is reference
management software for formatting lists of refer-
ences, which needs to be run twice by the compiler
in order to correctly output references, and in-text
citations. To address this, we modified AutoTeX’s
code27, enabling it to bypass certain errors and per-
sist with PDF generation. We configured AutoTeX
to control the compiler to run at least twice, even if
an error code is returned initially.

In conclusion, we combine TeXLive 2023, Auto-
TeX, and a Python-based API service into a single
container. This container, accessible via HTTP,
accepts source code and efficiently returns the com-
pilation outcomes.

4 Capabilities Overview

During the export phase, outputs are organized into
two DataFrames:

• The first DataFrame represents the Table of
Contents nodes, which was created during the
annotation process. Each line denotes a tree
node, with every node possessing a unique ID
and an ID indicating its parent. This structured
approach ensures that the succeeding page

25https://metacpan.org/pod/TeX::AutoTeX
26https://github.com/andrewhead/texcompile
27The modified AutoTeX can be found at https://github.

com/Fireblossom/TeX-AutoTeX-Mod
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Figure 2: Extracting reading order from an elementally
complex page. This example is taken from the second
page of (Cohen et al., 2016).

elements to be exported can be systematically
assigned to their respective nodes.

• Every row in the second DataFrame denotes
either a figure or token extracted from the
PDF. These tokens are allocated a number
indicating their reading order and a section
ID, if they are part of the author’s main con-
tent, starting from 0. A value of -1 in read-
ing order indicates elements not penned by
the author, and auto-generated by the LATEX
template. This facilitates a straightforward ex-
clusion of such elements during further analy-
sis. The label column encompasses semantic
structure labels including: Abstract, Author,
Caption, Equation, Figure, Footer, List, Para-
graph, Reference, Section, Table, and Title.

Both DataFrames can be exported as CSV files.

4.1 Use Case: Text Extraction with Reading
Orders

Reading order refers to the sequence in which con-
tent is meant to be read. In documents, it usually

follows a top-to-bottom, left-to-right pattern, but
there can be exceptions, especially in multilingual
or complex layout documents.

Figure 2 illustrates such a scenario. The labels in
the figure represent the order of the text extracted
by the different methods. In this case, starting
from the sixth block, the paragraphs extracted using
pdfplumber are interrupted by tables and pictures.

4.2 Use Case: Section-Weighted Scientific
Paper Summarization using LLM

Scientific papers are structured documents with
different sections, each serving a distinct purpose
(Wcg, 2008). While traditional summarization
techniques consider the entire document holis-
tically (Ibrahim Altmami and El Bachir Menai,
2022), section-weighted summarization assigns dif-
ferent weights to different sections, recognizing
that some parts of a paper may be more informa-
tive or critical than others for a quick understanding
(Cohan et al., 2018). The advantage of our frame-
work is the ability to accurately obtain sections as
compared to any current PDF extraction tool. We
provide a simple example in our GitHub repository.

5 Validation of Annotations

In addition to the unique features introduced in Sec-
tion 4, we also have to verify its consistency with
the annotation methods for existing datasets. We
use the DocBank dataset (Li et al., 2020b) to assess
the reliability of annotations generated by LATEX
Rainbow framework. Docbank dataset contains an-
notations for 1.5 million content elements across
500K scientific publication pages. It comprises pa-
pers from arXiv published between 2014 and 2018,
spanning fields like physics, mathematics, and com-
puter science. Due to its extensive size, range of
subjects, numerous annotated elements, and label-
ing method, Docbank is considered a benchmark
dataset for LATEX sources.

Since DocBank is a very large dataset, we ex-
tracted a subset for time and feasibility reasons.
We extracted LATEX source code of 100 papers in
DocBank from arXiv. They are then annotated and
compiled by our framework, 61 papers are suc-
cessfully annotated and compiled. 39 papers raise
errors. We summarize the reasons and numbers for
failures:

1. Parsing errors in the source code, such as un-
matched bracket pairs or expressions that are
digestible by pdfTeX but not by pylatexenc,
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Labels Precision Recall F1-Score
Abstract 0.9779 0.8197 0.8918
Author 0.5027 0.5515 0.5260
Caption 0.4676 0.3851 0.4224
Equation 0.1957 0.9016 0.3216
Footer 0.2029 0.2612 0.2284
List 0.4462 0.1762 0.2526
Paragraph 0.9379 0.6080 0.7377
Reference 0.8355 0.9718 0.8985
Section 0.5119 0.3777 0.4347
Table 0.8806 0.7939 0.8350
Title 0.3429 0.5320 0.4170

Table 1: Precision, Recall, and F1-Score of annotations
from LATEX Rainbow, compare to DocBank.

cause the parser to misread and yield empty
results. (23)

2. Compilation failures. It was reported28 that
some source code could not be compiled suc-
cessfully due to change of compilation envi-
ronment. (15)

3. File encoding problem. The source code con-
tains characters that Python cannot handle. (1)

To gauge consistency across annotated datasets,
Cohen’s Kappa Coefficient κ = po−pe

1−pe
is applied to

test consistency across annotated datasets. where
po is the empirical probability of agreement on the
label assigned to any sample, and pe is the expected
agreement when both annotators assign labels ran-
domly. pe is estimated using a per-annotator empir-
ical prior over the class labels (Artstein and Poesio,
2008). Cohen suggested the Kappa result be inter-
preted as follows: values ≤ 0 as indicating no agree-
ment and 0.01–0.20 as none to slight, 0.21–0.40
as fair, 0.41– 0.60 as moderate, 0.61–0.80 as sub-
stantial, and 0.81–1.00 as almost perfect agreement
(McHugh, 2012). We get κ = 0.32. This value
demonstrates the fair consistency of our approach
with the existing baseline .

We further assessed Precision, Recall, and F1-
Score using DocBank’s annotations as the gold
standard. As detailed in Table 1, our framework’s
annotations align closely with DocBank in the Ab-
stract, Paragraph, Reference, and Table categories,
and differs in other categories. Notably, there is
a considerable degree of inconsistency in the se-
mantic labeling of some categories. The reasons

28https://info.arxiv.org/help/faq/texlive.html

for these inconsistencies are mainly differences in
annotation strategies and difficulties in aligning our
annotations with DocBank. We delve deeper into
the inconsistencies in Appendix C.

6 Known Issues and Future Work

In the future, our primary goal is to update the
parser so that it can tolerate syntax errors that the
pdfTeX compiler can tolerate.

We also plan to expand the LATEX Rainbow
framework with parallelization capabilities. Be-
cause the pdfTeX engine does not support multi-
threaded parallelism, this makes them slow to com-
pile, especially for long files. The idea is to enable
parallelism at the scale of multiple files. Given
the containerized nature of our PDF compilation
service, this transition should be seamless.

For extensive projects, consider the example of
Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume
1: Long Papers), which comprises 912 papers. The
cumulative number of tokens in such projects might
surpass the maximum number of colors that can
be allocated (9 million). In these cases, the LATEX
Rainbow framework is unable to perform the an-
notation. Our next steps include refining the color
system to enhance its usability and distinctiveness.

Coloring the LATEX element doesn’t always work.
For example, \url{} command forces its argu-
ments to be blue, instead of the color we assigned.
In addition to the coloring method, there is also the
SyncTeX (Laurens, 2008) plugin that allows com-
piled PDF elements to be linked back to the LATEX
source code. It is directly involved in the com-
pilation process and records the correspondence
through the internal auxiliary files. Our plan is to
go deeper into its mechanisms to establish a more
robust PDF to LATEX source code correspondence.

Different publisher templates interpret LATEX
terms uniquely, making it challenging for our
database to account for every variation. For ex-
ample, \lstinputlisting[]{} defines the con-
tent to be displayed to the PDF with a substring
value in the optional argument. This is significantly
different from the definition of most commands.
As mentioned in Section 5, there are many papers
that cannot yet be parsed correctly. Therefore, we
greatly welcome and depend on the open-source
community to contribute the detailed parsing rules
for each template.
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7 Conclusion

In this paper we introduce a framework which can
be used to establish a correspondence between
LATEX code and PDF elements, exporting detailed
semantic annotations. Our framework meticulously
extracts semantic markup, maintaining the layout
fidelity of the associated PDF files. The structured
information extracted by our framework helps in
better document indexing, searching and analysis.
It improves document accessibility and helps de-
velop and refine document understanding tools.

Our framework is more than just yet another
toolkit to the growing list of document datasets. By
ensuring versatility and adaptability as well as scal-
ability, we aim for it to become a universal tool that
can facilitate enhanced document analysis across
multiple disciplines and applications. We sincerely
hope that open-source community can derive inno-
vative uses and benefits from our solution.
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A Selection of Color Extraction Tools

In Addition to pdfplumber. We also experimented
with the PyMuPDF29 package for color extraction,
enticed by its capacity to extract colors as integer
values. However, it uses the sRGB color space,
which introduced mismatches between our annota-
tions and extracted values. A notable misalignment
was observed with colors #000000 and #000100
in RGB are both being misconstrued as the singu-
lar color #000000 in sRGB. As PyMuPDF features
in able to extract more refined information, such
as block number, line number, whether it is ital-
icized or superscript, and so on. Some valuable
information is lost by not using this package. We
will continue to study underlying logic of the pack-
ages and adjust the implementation described in
this paper.

B Note on Non-hierarchical Structure of
Document

In the realm of document digitization, there’s on-
going debate regarding the hierarchical structure of
articles. Specifically, discussions revolve around
overlapping structures within the XML and TEI
communities30 (Marcoux et al., 2013; Hasibi and
Bratsberg, 2014). Overlaps arise when a docu-
ment embodies multiple structures that intersect
non-hierarchically, making it impossible to repre-
sent the document as a tree. Such as a metrical
structure of feet and lines in poetry. Since our ex-
ported tree isn’t an XML file, we can sidestep the
non-hierarchical structure issue by distinctly defin-
ing section elements and overlapping elements.

C Inconsistencies to DocBank

There are several categories in Table 1 that differ
very much. In this section we summarize the po-
tential causes from two perspectives.

C.1 Labeling Strategies
Among them Equation and Title have particularly
high recall values and very low precision. Addition-
ally, Paragraph’s recall is relatively low. This is due

29https://github.com/pymupdf/PyMuPDF
30https://tei-c.org/release/doc/tei-p5-doc/it/

html/NH.html

to the difference in annotation strategies between
DocBank and our approach.

More specifically, our rules recognize more com-
mands as Title and Equation than Paragraph in
DocBank.

• For Title, DocBank only recognizes the ex-
act \title{}, while LATEX Rainbow frame-
work recognizes all commands that contain
the word title. Such as \aistatstitle{} or
\begin{title}.

• For Equation, we not only recognize specific
commands like \begin{equation}. We also
annotate the mathematical expressions on the
line. We do realize that it can introduce po-
tential inaccuracies, for example in practice
we have found in-line formulas used as italics
instead of mathematical formulas. We will
refine the rules in future updates.

• In DocBank, any text not color-coded, in-
cluding page numbers, headers, and copy-
rights, is defined as a Paragraph. In contrast,
LATEX Rainbow doesn’t tag these elements
with a semantic layout label. This approach
in DocBank seems imprecise and could intro-
duce potential biases.

C.2 DocBank and LATEX Rainbow annotations
are not aligned

In practical we found that using tokens position
doesn’t consistently match the labeling. Namely,
for identical pages of the same paper from arXiv,
the tokens in the same locations differ between
DocBank and LATEX Rainbow. Upon close exam-
ination of the annotated pages, we observed that
DocBank’s annotation coordinates diverge from the
arXiv document’s. We summarize two reasons for
this.

• Papers may have been updated since the re-
lease of DocBank and we annotate the lat-
est version of the paper. This may result in
changes to the content and layout of the paper.

• Changes in compilation environments and
compiler versions may also have led to subtle
differences in compiled PDF layout.

For tokens that could not be linked, we had to
use matching of contexts and tokens, which may
have caused misalignment. This in turn affects the
evaluation.
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The evaluation is available as a Jupyter notebook
in the GitHub repository.
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Abstract
Text classification is an important technique in
natural language processing for categorizing
text into appropriate domains. With the increas-
ing amount of textual data, robust text classifi-
cation is in high demand. This paper focuses on
single-label classification of text for scholarly
articles, aiming to analyze a large number of
papers. Inspired by the successful Fusion-in-
Decoder method used in question-answering
tasks, we propose an accurate method suitable
for long articles. We evaluate the effective-
ness of our method through experiments on
single-label classification with scholarly arti-
cles, demonstrating its high F1 scores.

1 Introduction

Text classification plays a significant role in natu-
ral language processing, and several methods have
been proposed (Kim, 2014; Zhang and LeCun,
2016; Zheng and Yang, 2019; Minaee et al., 2021).
This paper focuses on a classification task for schol-
arly articles. The rapid growth of scholarly articles,
for instance over 370,000 papers on COVID-19
published by 2022, necessitates efficient analysis.
Pre-trained language models such as BERT (De-
vlin et al., 2019) face challenges in processing long
texts such as scholarly articles. They are often lim-
ited by input length, leading to token overflow and
utilization of only the initial part of the text. Ad-
ditionally, these models do not consider the impor-
tance of each sentence in the full text for accurate
label classification.

To address these limitations, we propose a
method that leverages techniques from question an-
swering (QA) tasks to enhance label classification
accuracy for long texts. Specifically, we extract a
set of sentences deemed informative based on the
summary section, which represent a collection of
important information in the paper. We combine
the vector representations of these sentences us-
ing Fusion-in-Decoder (FiD) (Izacard and Grave,

2021b), a high-performing approach in QA tasks,
to estimate the label. Although FiD was originally
proposed for QA tasks, we applied it to paper analy-
sis because it can extract important sentences from
long documents and implement them in neural net-
works. We evaluate our proposed method using
the CORD-19 dataset (Beltagy et al., 2020) of sci-
entific papers on COVID-19. The results of our
evaluation experiment demonstrate the effective-
ness of our approach.

2 Related Work

Existing pre-trained language models generally
used in text classification, such as BERT (De-
vlin et al., 2019), have limitations on the input
length, preventing the utilization of all information
in long documents during fine-tuning. While Long-
former (Beltagy et al., 2020) and BigBird (Zaheer
et al., 2021) are notable approaches for handling
long documents, they still have limitations regard-
ing input length.

When considering the handling of a large amount
of data, QA tasks can provide valuable insights.
Karpukhin et al. (2020) proposed Dense Passage
Retriever (DPR), which retrieves relevant passages
from a large number of documents, achieving high
accuracy in an open-domain QA task.

Lee et al. (2019) introduced the Open-Retrieval
Question Answering (ORQA) model for open-
domain QA tasks. The ORQA model comprises
a retriever that identifies relevant sentences from
external knowledge and a reader that extracts an-
swers from the retrieved sentences and questions.
Building on the ORQA model, Izacard and Grave
(2021b) proposed Fusion-in-Decoder (FiD) by im-
proving the reader part. Additionally, Izacard and
Grave (2021a) proposed a method to train the re-
triever using the knowledge from the reader, lead-
ing to improved accuracy in QA tasks. In this work,
we adapt Izacard et al.’s FiD to the task of single-
label classification.
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Figure 1: Overview of the proposed method.

3 Methodology

3.1 The Fusion-in-Decoder for Label
Classification

The core idea of the proposed method involves in-
corporating the Fusion-in-Decoder (FiD) into a la-
bel classification task. Figure 1 shows a diagram of
the proposed method with the inclusion of the FiD.
The FiD comprises two components: the retriever
and reader (Izacard and Grave, 2021b).

Retriever The retriever component requires ef-
ficient information, referred to as a question or
query in the QA task, and segmented sentences of
a paper (Ctxs), referred to as a context. The re-
triever is based on Dense Passage Retriever (DPR)
(Karpukhin et al., 2020). In Figure 1, efficient in-
formation and Ctxs are embedded as dense vec-
tor representations by BERT (Devlin et al., 2019)
networks. The retriever is trained to reflect the
relevancy between representation vector of each
sentence by the dot product. The objective of using
dot product is to ensure that the inner product of the
efficient information and the segmented sentences
(Ctxs) produces appropriate value for retrieving rel-
evant sentences from Ctxs with using efficient in-
formation as query. We take into consideration the
cross-attention score in the reader, which we will
be described in following section. This is because
a sentence with several attentions in the previous
reader, considered to be more useful for classifica-
tion. Finally, the retriever outputs a set of sentences
from Ctxs, which is referred to as passage retrieval.
This component retrieves valuable Ctxs for label
classification based on efficient information.

Reader The reader is based on a pretrained
transformer-based sequence-to-sequence network.
The reader component requires passages, which
comprise both the efficient information and the
retrieved Ctxs. More precisely, each sentence in
Ctxs is concatenated with the efficient information,
which is referred to as a passage. These passages
are independently processed by each reader’s en-
coder, which outputs an embedded expression for
each passage. The encoded outputs are then con-
catenated and fed into the decoder. The decoder
generates an estimated label for the paper as an
answer in the QA task.

Repeated training During the process in the
reader, the cross-attention scores are calculated be-
tween the efficient information and passage in the
transformer model. Based on the assumption that
passages with high cross-attention scores calcu-
lated by the reader contribute to accurate label es-
timation, the retriever calculates the inner product
between the efficient information and segmented
sentences within the passages and is trained to es-
tablish an association between them. During the
process in the retriever, the passages used in the
reader are updated. Due to their interdependence,
the repeated training of the reader and retriever
models leads to an improvement in the accuracy of
each model.

Segmented sentences for retriever Izacard and
Grave (2021b) incorporated external knowledge
sources, such as Wikipedia, for the segmented sen-
tences (Ctxs) in the QA task. In this paper, we
utilize a scholarly article from the same domain
that contains the entire paper as the Ctxs, which
includes pertinent information for classifying pa-
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pers. We assume that each scholarly article in train-
ing data comprises three components: an abstract,
main text, and label that represent the genre of the
article. Scholarly articles are often longer than typ-
ical model such as BERT can handle. FiD utilize
shorter sentences that extracted using retriever, so
it can handle such long articles.

3.2 Training Process

Based on Section 3.1, the proposed model is trained
as follows:

1. Both the abstract and main text of an article
are divided into sentences. During the initial
training of the reader, the segmented abstracts
which have correct labels, are utilized as the
contexts. To simplify the training process, a
fixed efficient information “What genre best
describes this abstract?” is employed for all
papers, instead of selecting essential informa-
tion for label estimation as part of the question.
A detailed analysis of appropriate efficient in-
formation is provided in Section 5.

2. The retriever is trained using the cross-
attention scores calculated by the reader. The
objective is to ensure that the inner prod-
uct of the efficient information and the seg-
mented sentences (Ctxs) produces an appro-
priate value. By optimizing this training ob-
jective, the retriever trains to select relevant
Ctxs that align well with the given efficient
information.

3. Using the retriever trained in step 2, the rele-
vant sentences are retrieved from Ctxs using
FAISS (Johnson et al., 2019). The objective is
to extract highly relevant sentences as contexts
and avoid extremely short sentences. This pro-
cess, known as passage retrieval, helps iden-
tify and select the most informative and mean-
ingful sentences from Ctxs for further analy-
sis.

4. The efficient information and Ctxs extracted
in step 3 are fed into the new reader model as
a passage, and the reader is re-trained based
on this input.

5. Steps 2 to 4 are repeated alternately to itera-
tively train the reader and the retriever.

4 Experiments

4.1 Experimental Settings

4.1.1 Dataset
We conducted experiments using the CORD-19,
which is a collection of papers released by the Allen
Institute for AI1. The dataset is open access and
includes papers sourced from PubMed, PubMed
Central, the World Health Organization’s COVID-
19 database, and preprint servers such as bioRxiv,
medRxiv, and arXiv. Each paper in CORD-19 is
accompanied by metadata, including author names,
submission dates, and acquisition sources, along
with the abstract. For our experiments, we used
7,127 papers extracted from CORD-19, specifically
from the bioRxiv. Each paper is associated with 25
research field labels. The average number of sen-
tences in the full text of the papers is approximately
154.

4.1.2 Training Setup
We implemented our approach with FiD (Izacard
and Grave, 2021b) 2.

The reader was initialized with the pretrained
text-to-text transfer transformer (T5) base model
(Raffel et al., 2020) with 220 million paremeters,
available in the HuggingFace Transformers library.

During the initial training of the reader, the con-
texts (Ctxs) cannot be used because the retriever
is not yet trained. We assumed that the abstract
of each paper would be effective for label classifi-
cation and used it as the initial value of Ctxs. We
trained the readers for 20K steps.

The retriever was initialized with pretrained
BERT base model (Devlin et al., 2019). For the
retriever’s output, we selected the top 20 sentences,
excluding those comprising 10 words or less, from
the search results of the paper database. We trained
the retriever for 50k steps.

We fine-tuned the reader and the retriever us-
ing Adam (Kingma and Ba, 2017) with a constant
learning rate 10−4 and dropout rate of 10%. The
loss function and other settings related to learning
followed the original FiD settings.

4.1.3 Evaluation
For the baseline, we used T5 where the full text
of each paper was treated as a single passage to
simulate T5 embeddings of full texts.

1https://allenai.org/data/cord-19
2https://github.com/facebookresearch/FiD
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Ctxs Iteration Micro-F1 Macro-F1
T5(baseline) - - 0.552 0.366
Proposed abstract 0 0.555 0.362
Method retrieved 1 0.562 0.298

retrieved 2 0.554 0.339
retrieved 3 0.575 0.377
retrieved 4 0.570 0.386
retrieved 5 0.551 0.350
retrieved 6 0.541 0.305
retrieved 7 0.552 0.354
retrieved 8 0.540 0.319

Table 1: Experimental results.

For the evaluation, we employed the widely
used classification metrics, namely Micro-F1 and
Macro-F1, which provide insights into the overall
performance on the classification tasks. We used
NVIDIA V100 for training.

4.2 Experimental Results

Table 1 shows the experimental results of the label
classification task. The “Iteration” column indi-
cates the number of iterations of the reader and
retriever.

Our method outperformed T5 in both Micro-
F1 and Macro-F1. This is because the proposed
method takes each sentence into account by the
reader, which distinguishes it from both baseline
methods performed. In the T5 baseline, all sen-
tences were inputted as a single sentence, whereas
each sentence was inputted separately for the pro-
posed method. Our proposed method improved the
accuracy by learning long sentences that exceed
the T5 token limit.

We show F1 scores of the proposed method for
each iteration in Table 1. This sequential process
would allow the model to improve and make more
accurate predictions. Comparing the initial learned
reader with the T5 baseline, we observed that both
Micro-F1 and Macro-F1 achieved similar levels of
accuracy. This suggests that the process of cutting
off long full texts and utilizing segmented abstracts
as Ctxs is sufficient for achieving comparable per-
formance in using the entire text.

In the proposed method, we utilize the seg-
mented abstract as Ctxs for the first reader. The
output of the retriever, which is trained based on
the reader’s output, serves as the input for the sub-
sequent reader in the pipeline. During the repeated
iterations, we observed that the Micro-F1 score re-
mained relatively unchanged until the fourth itera-
tion, while the Macro-F1 showed improvement. At
the fifth iteration, both the Micro-F1 and Macro-F1

Efficient
information Ctxs Iteration Micro-F1 Macro-F1

fix abstract 0 0.555 0.362
fix full text 0 0.590 0.380

abstract abstract 0 0.570 0.396

Table 2: Results of additional experiments for analyzing
the effects of changing efficient information.

scores decreased. Based on these observations, we
decided to stop the iteration. It is inferred that the
reason why the accuracy improved by continuing
the iteration is that it became possible to retrieve
further important information written in full text.
Therefore, it is thought that the improvement in
accuracy saturated after several iterations. This pat-
tern aligns with findings from previous studies on
QA tasks using Fusion-in-Decoder (FiD), where it
was reported that performance tends to improve up
to approximately the fourth iteration (Izacard and
Grave, 2021a). Similarly, in our study, it appears
that the performance improvement reached a point
of saturation (3rd or 4th iteration), beyond which
further iterations did not lead to significant gains.

5 Analysis

In Table 1, we used segmented abstracts as the ini-
tial contexts (Ctxs). To investigate the effect of
using a larger amount of text, we replaced the ab-
stracts with segmented full texts. The results (sec-
ond row in Table 2) show that using full text yields
higher Micro-F1 and Macro-F1 scores compared
to using abstracts (first row in Table 2). This in-
dicates that providing more context to the reader
contributes to improved accuracy. However, it is
important to note that increasing the context size
also increases the computation time. In this study,
training the reader with full text required approxi-
mately 9 hours, while training with abstracts only
required approximately 3 hours.

In Table 2, we show the result of a supplemen-
tary experiment. In Table 1, our initial approach
used a common phrase as efficient information
in section 3.2. However, the original Fusion-in-
Decoder (FiD) used a characteristic sentence for
estimating the answer. The results without any it-
erations (second row in Table 1) estimate labels
using abstracts without employing retrievers. The
Micro-F1 score is similar to the baseline (first row
in Table 1), indicating that abstracts contain use-
ful information for label classification. Therefore,
instead of using a common fixed phrase for effi-
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cient information, we experimented using abstract
as efficient information.

Compared to the experiment described in Sec-
tion 4 without any iteration (first row of Table 2),
both the Micro-F1 and Macro-F1 have improved
the accuracy. This suggests that the selection of
efficient information is significant in improving the
accuracy of label classification.

6 Conclusion

We extended the Fusion-in-Decoder (FiD) ap-
proach, originally designed for question answer-
ing, to a label classification task for scholarly pa-
pers. Through experiments using papers related to
COVID-19, we validated the effectiveness of the
proposed method.

For future work, we plan to improve the re-
triever’s performance by refining the input selec-
tion. Since a retriever model is trained using only
cross-attention scores of a reader model for refer-
ences, we will find new additional criteria to get
more effective passages. Also, we will conduct
experiments on other such datasets to confirm the
effectiveness of the proposed method.

Limitations

We have not conducted human evaluation to con-
firm whether the output passages generated by a
retriever model are the most effective information
for a reader model.
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Abstract
This study tackles the challenge of generating
appropriate academic titles based on the paper’s
abstract. We approach this task as a high-level
text summarization problem and introduce an
innovative post-processing method that com-
bines a predictive model with a set of linguistic
rules to enhance the quality of the title gen-
eration. We start by evaluating three Natural
Language Generation models (BART, T5, Flan
T5), by identifying the top-performing model
and by configuring it to generate diverse titles.
We then conduct experiments employing vari-
ous post-processing strategies -using SciBERT
and linguistic rules- to select the best title out
of all machine-generated options. Finally, we
assess our title selection methods in relation to
human evaluations.

1 Introduction

Titles of academic articles are more than simple
labels; they serve as a concise representation of
the contents of the paper, providing a glimpse into
its purpose. Since titles serve as an initial touch-
point, they play an indispensable role in piquing
readers’ interest, emphasizing the relevance of the
research, and enhancing its visibility within the vast
scholarly landscape. Crafting the right title can be
difficult, as one must distill potentially very com-
plex research into a single, concise statement. This
can be particularly challenging as the title must re-
flect both the depth and breadth of the paper, while
also appealing to a diverse academic audience. Se-
lecting an appropriate title also holds significance
in the context of citations: according to both Paiva
et al. (2012) and Deng (2015), papers with titles
that have specific characteristics, such as a certain
maximum length, get cited more often than papers
that do not meet such criteria.

Traditionally, researchers have relied on their
own judgment and expertise to craft compelling

titles that summarize the findings of their research
articles. In this paper, we delve into the task of au-
tomatically generating stylistically and discipline-
appropriate titles for academic articles. To do that,
we thought of generating titles using an article’s
abstract as input, as abstracts capture key passages
and findings of a paper. An alternative would be
to use the full paper as input, but using only the
abstract allows us to reduce run times and hence
costs.

Generating a title on the basis of a paper’s ab-
stract can be thought of as a special kind of summa-
rization process: the abstract must be condensed
into a short “sentence" that is maximally descrip-
tive of its contents. Accordingly, we approach the
task of automatically generating titles for academic
abstracts as a summarization task. This is in line
with existing research on title generation or com-
parable tasks. Unlike existing methods, however,
our key contribution lies in experimenting with dif-
ferent post-processing strategies to further refine
the quality of automatically generated titles. A par-
ticularly novel approach is that of using linguistic-
stylistic rules, which we use to automatically filter
out generated titles that do not adhere to accepted
conventions on what constitutes an optimal aca-
demic title.

1.1 Related Work

We will review the literature on both title gener-
ation itself as well as headline generation, which
pertains to the automatic creation of news-article
headlines and is thus a task similar to title genera-
tion.

In contemporary research, automatic ti-
tle/headline generation is often approached as a
text summarization problem. The field of text
summarization is generally split into two primary
categories: extractive and abstractive summariza-
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Model Rouge-1 F-score Rouge-2 F-score Rouge-L F-score Rouge-1 P Rouge-2 P Rouge-L P Rouge-1 R Rouge-2 R Rouge-L R
BART Large 0.249 0.077 0.214 0.256 0.081 0.218 0.267 0.083 0.231
T5 Large 0.255 0.094 0.231 0.270 0.100 0.244 0.262 0.097 0.237
Flan T5 Large 0.242 0.073 0.213 0.259 0.078 0.227 0.245 0.074 0.215

Table 1: Initial title generation results

tion. Presently, both these categories are addressed
using methodologies anchored in the Transformer
architecture (Song et al., 2020; Bukhtiyarov and
Gusev, 2020; Liu and Lapata, 2019). A prevalent
strategy for both forms of summarization is the
encoder-decoder language model, exemplified by
models like BertSumExt (Liu and Lapata, 2019)
and PEGASUS (Zhang et al., 2020). Viewing
summarization as a seq2seq challenge aligns
well with the encoder-decoder framework, given
the presence of a source and target text, akin
to NMT scenarios. In this configuration, the
generative decoder section conducts abstractive
summarization. For strictly extractive endeavors,
decoders are typically substituted by a specific
classifier determining which input tokens will
appear in the final summary. Another strategy is
to fine-tune a GPT-2 (Radford et al., 2019) style
auto-regressive model for the summarization task;
this approach was adopted by both Koppatz et al.
(2022) for headline generation and Mishra et al.
(2021) for title generation.

Many contemporary title and headline genera-
tion methods have adopted metrics like BLEU or
ROUGE to assess model performance (Matsumaru
et al., 2020; Bukhtiyarov and Gusev, 2020; Tilk
and Alumäe, 2017; Mishra et al., 2021); these are
also standard for summarization evaluation. An
exception is Koppatz et al. (2022), who also rely
on manual structured review by domain experts to
assess the quality of their automatically generated
headlines. While human evaluations (especially if
by domain experts) represent a gold standard, they
are both expensive and time-consuming to obtain.
This is especially true for academic titles, as eval-
uating how well a title captures the essence of an
academic paper means being able to make sense of
potentially extremely technical, specialized infor-
mation.

2 Title Generation

2.1 Dataset

We created an initial dataset containing 136,640
academic articles. We obtained this dataset
by downloading the Huggingface ArXiv

dataset (https://huggingface.co/datasets/
scientific_papers) and the Kaggle ArXiv
dataset (https://www.kaggle.com/datasets/
Cornell-University/arxiv), by selecting
those articles that appeared in both datasets (by
cross-referencing article ids), and by extracting
the following information for each article: title,
abstract, category, and full article text. Merging
the two datasets was necessary as the Huggingface
ArXiv dataset does not contain the full text of a
paper, nor its category. While we are not using the
full text of articles for this specific study, we plan
on doing so in the future for a follow-up study,
hence it was important for us to have a dataset
containing all parts of the articles we use.

2.2 Testing out Different Models

As we decided to treat title generation as a summa-
rization task, we looked into models that could best
handle summarization. We considered three dif-
ferent state-of-the-art language models: T5 Large
(Raffel et al., 2020), Flan T5 Large (Chung et al.,
2022) and BART Large (Lewis et al., 2019).

T5 treats every NLP task as a text-to-text prob-
lem, which suits title generation perfectly –the
model reads in the abstract as text input and outputs
the generated title as text. Flan T5 Large stands as
an improved version of the T5 model, having under-
gone fine-tuning across a blend of tasks. Demon-
strating superior performance, Flan T5 outperforms
its predecessor by handling more ubiquitous tasks.
However, we wanted to see how these models com-
pare on a less common task such as summarizing
academic abstracts to generate titles. On the other
hand, BART, with its unique architecture that is
both auto-regressive and auto-encoding, can also
be used to input an abstract and output a short
summary in the form of a title. BART’s ability to
consider the context from both directions enables
the model to generate fluent and coherent titles that
accurately represent the content of the abstracts.

As a first step, we tried generating titles using
all three language models. To do that, we split
our dataset into a training subset, a validation sub-
set and a test subset (70:15:15 split), and trained
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BART Large, T5 Large and Flan T5 Large. We
employed PyTorch as the framework for training
our generating models and utilized the same set
of hyperparameters to train each generating model.
We trained all models for 3 epochs with a learn-
ing rate of 1e-5, a batch size of 6, and using the
Adam optimizer (Kingma and Ba, 2014). We set
the maximum input sequence length to 512 tokens
and the maximum output sequence length to 128 to-
kens. To promote diversity and exploration during
training, we employed a sampling parameter set
to true. To ensure reproducibility and control the
randomization during training, we set the random
seed to 42.

2.3 Final Model Selection

We evaluated the performance of our three models
by comparing the title generated by each model
to the original title of the paper, to determine how
(dis)similar artificial titles were with respect to the
original. While similarity to the original title is
not in itself a measure of the quality of a machine-
generated title (a maximally dissimilar title might
still be an excellent title), we reasoned that comput-
ing similarity scores could be an at least partial indi-
cation of a machine-generated title being “human-
like" (i.e. similar to what a human writer would
come up with) and hence a good title. Considering
that most of the evaluation mechanisms based on
similarity scores are highly correlated (Fabbri et al.,
2021), we decided to resort to ROUGE (Lin, 2004).
The results are given in Table 1. T5 Large per-
formed best on almost all ROUGE metrics except
ROUGE 1 Recall, where BART Large performed
better.

One of the goals of our study was to determine
how much we could improve the performance of
our best-performing model through further post-
processing. Based on Table 1, we thus decided
to settle on T5 Large as the model to use for all
additional post-processing experiments.

Our post-processing consisted of two steps: re-
fining title generation through SciBERT, and re-
fining title generation through linguistic-stylistic
rules.

3 Post-Processing, Step 1: SciBERT

For the first post-processing step, we wanted to de-
termine whether we could obtain higher ROUGE
scores by generating multiple titles for each ab-
stract using T5 Large, selecting the most represen-

tative titles out of all those generated, and creating
a synthetic dataset using these most representative
titles.

3.1 Extraction of Oracles

Using T5 Large, we generated five titles for each
of the abstracts in our training and validation sub-
sets. Below we provide an example of the types of
titles that were generated using T5 Large. Using
the example abstract displayed in Fig.1, originally
from a paper by Mallick et al. (2017) titled "Energy-
dependent variability of the bare Seyfert 1 galaxy
Ark 120", we generated the following five titles:

1. A long-period XMM-Newton observation of
the bare Seyfert 1 galaxy Ark 120

2. Ark 120: spectral-timing analysis of XMM-
Newton observance over four consecutive or-
bits in 2014

3. Ark 120: spectral-timing analysis and
hardness-intensity diagram

4. Broad-band X-ray spectroscopy of Ark 120:
A spectral-timing analysis of a long 486 ks
XMM-Newton observation

5. A spectral-timing analysis of the long 486 ks
XMM-Newton observation of the bare Seyfert
1 galaxy Ark 120

For each of the titles generated by T5 Large, we
computed a ROUGE score by comparing the gen-
erated title to the paper’s original title. Following
this, we created a synthetic dataset with a specific
labeling scheme: the title with the top ROUGE
score was labeled as “1” (we refer to this as the or-
acle), while the title with the lowest score received
a “0” label. Note that titles with intermediate scores
were neither labeled nor included in this dataset.
The purpose of this was to focus on the two most
distinct title generations for a given abstract.

3.2 Fine-tuning SciBERT on the Synthetic
Dataset

We trained SciBERT (Beltagy et al., 2019) on the
obtained synthetic dataset. We decided to use SciB-
ERT as it outperforms BERT in a variety of tasks
in the scientific domain (Beltagy et al., 2019) and
achieves SOTA performance in multi-class text
classification on the SciCite dataset (Cohan et al.,
2019).

In our study, we used a modified version of SciB-
ERT, which was previously pre-trained to optimize
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Figure 1: Abstract Example

the performance of the model for scientific text
analysis. This prediction model is influenced by
the success of using the transformer-model architec-
ture for the classification of sentences in extractive
summarization (Liu and Lapata, 2019) or later ap-
plied in fact-checking summarization (Atanasova
et al., 2020). In our experiment, we fine-tune SciB-
ERT model to generate a probability for each gen-
erated title. This probability interprets how similar
the generated title is to the original (human) title,
while the original title does not enter the model in
the prediction. This model learns to distinguish the
titles that are most and least similar to the origi-
nal, human title. Our fine-tuned SciBERT model
could be applied as a classifier as well, but we only
wanted to rank our generated titles by assigning a
SciBERT probability value to each generated title.

To fine-tune our SciBERT model, we followed
the design and optimization decisions described
in Beltagy et al. (2019) and Devlin et al. (2019).
Our approach involved using a linear one-layer
feed-forward classifier with the ReLu activation
function. The classifier took the last hidden state of
the [CLS] token as input, effectively using it as the
sequence’s features. We conducted extensive exper-
iments to determine the optimal hyperparameters
for fine-tuning SciBERT. This included varying the
number of epochs (ranging from 2 to 5), batch sizes
(16, 32, or 50), learning rates (5e-5, 5e-6, 1e-5, or
2e-5), and incorporating or excluding a dropout
rate of 0.1. To optimize the training process, we
utilized the AdamW optimizer and cross-entropy
loss. Our best results were achieved by fine-tuning
the models for 3 epochs, with a batch size of 32
samples, a learning rate of 5e-5, and no dropout ap-
plied. Following this, we applied a linear warmup
and linear decay technique as described in Devlin
et al. (2019). We employed the softmax function
to determine probabilities for predictions, which
served as the initial selection or ranking score for
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Figure 2: PR curve on testing dataset

finding the best title candidate.

3.3 Results

To evaluate the effectiveness of title generation se-
lection, employing Precision-Recall (PR) curves
and the corresponding Area Under Curve (AUC)
(see Fig.2) provides comprehensive and robust test-
ing (Boyd et al., 2013). This quality approach al-
lows for an exhaustive evaluation of the model’s
performance across a broad spectrum of probability
rankings.

The achieved performance of the model Area Un-
der the Precision-Recall Curve (AUC-PR) 0.77 is
particularly interesting because we always labeled
the generated titles with the highest and lowest
ROUGE scores in the synthetic training dataset.

In the initial row of Table 2, we consider the
baseline model as a fine-tuned T5 Large, produc-
ing a single title for each abstract, identical to row
2 in Table 1. In the subsequent row of Table 2,
we analyze the same fine-tuned T5 Large model,
but this time generating five titles for each abstract.
From this set of machine-generated titles, we se-
lect the machine-generated title with the highest
SciBERT probability. Those selected titles for each
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Model Rouge-1 F-score Rouge-2 F-score Rouge-L F-score Rouge-1 Precision Rouge-2 Precision Rouge-L Precision Rouge-1 Recall Rouge-2 Recall Rouge-L Recall
T5 - Baseline 0.255 0.094 0.231 0.270 0.100 0.244 0.262 0.097 0.237
T5 + SciBERT 0.281 0.103 0.253 0.295 0.109 0.265 0.291 0.107 0.262
T5 + SciBERT + Linguistic rules 0.281 0.103 0.253 0.295 0.109 0.266 0.288 0.107 0.260
Oracles by Rouge 1 F-score 0.393 0.176 0.352 0.416 0.188 0.372 0.400 0.179 0.357

Table 2: Improved title generation results

abstract are compared to original human titles. Con-
sequently, in Table 2, the ROUGE metric is consis-
tently calculated based on the same original human
titles, although the chosen artificial titles may differ
across various models. When comparing the sec-
ond row to the first row in the table, we observed
a significant improvement in the overall title qual-
ity by utilizing SciBERT for title selection. This
improvement is evident across all ROUGE metrics.
However, when comparing the second row with
the last row, where ROUGE utilized artificial titles
for evaluation, it becomes evident that there is still
considerable room for further improvement.

4 Post-Processing, Step 2: Linguistic
Rules

To ensure the quality of artificially generated titles
for academic papers, we also implemented a sec-
ond post-processing step that involved evaluating
each title against a set of linguistic-stylistic rules.
These rules were designed to adhere to the con-
ventions of academic titles while at the same time
enhancing clarity, conciseness and outreach poten-
tial of the paper. We employed six distinct rules;
titles that met all rules were assigned a score of 6,
titles meeting only 5 rules were assigned a score
of 5, and so on. The six rules we used are outlined
below. We arrived at these rules after consulting
several papers and online resources on how to write
effective titles for academic papers.

I. Title Length: Titles should be concise, but also
not so short that it is unclear what the paper is
about, or how it differs from related articles
discussing the same topic (Knight and Inger-
soll, 1996; Paiva et al., 2012; SHU Library,
2020). Therefore, for this category, we gave a
0 score to titles longer than 16 words (Word-
vice, 2023) or shorter than 5 words (USC Li-
braries, 2023), and a score of 1 otherwise.

II. Geographical Locations: Paiva et al. (2012)
found a negative correlation between men-
tions of specific geographical locations (e.g.
"Mortality Rates in Sub-Saharan Africa") in
titles and number of citations per article. Ac-

cordingly, we gave a score of 0 to titles con-
taining any reference to geographical loca-
tions, and a score of 1 otherwise.

III. Forbidden Punctuation Marks: Paiva et al.
(2012) found a negative correlation between
the number of citations and the presence of ex-
clamation marks, question marks, and dashes
in titles (see also USC Libraries (2023)). We
thus gave a 0 score to titles containing these
punctuation marks: ‘?’, ‘-’, ‘!’.

IV. Suboptimal Nouns: According to Knight and
Ingersoll (1996), phrases such as "The Effects
of," "A Comparison of," "The Treatment of,"
and "Reports of a Case of" should be avoided
in titles (see also SHU Library (2020); USC
Libraries (2023)). Accordingly, we gave a
0 score to titles containing the nouns "analy-
sis," "effects," "comparison," "treatment," "re-
port/reports".

V. Passive Verbs: Active voice should be pre-
ferred in academic titles (SciPress, 2017). We
gave a 0 score to titles containing verbs in the
passive voice, and a 1 score otherwise.

VI. Abbreviations: We gave a 0 score to titles that
included abbreviations. This rule aimed to
ensure that the titles are accessible to a wide
range of readers without relying on special-
ized knowledge or acronyms (SHU Library,
2020; Wordvice, 2023).

To assign these linguistic scores, we wrote
Python text-processing rules that would take gener-
ated titles as input and assign to each title a score
from 0 to 6 based on how many of the above rules
each title met. While there are many tips on how
to write effective titles for scientific publications,
we specifically chose the above-mentioned rules as
it is easy to code text-processing scripts that check
automatically whether these rules are met. The mo-
tivation for adding this additional post-processing
step was thus to obtain a simple and computation-
ally inexpensive way of further checking machine-
generated titles for adherence to standard norms
in academic writing. We reasoned in particular
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that adding this type of post-processing could par-
tially eliminate/reduce the scope of work of any
human evaluator who was to manually check each
machine-generated title for quality, which can be a
lengthy and costly process.

4.1 Linguistic Score Results
We normalized the linguistic scores using the fol-
lowing formula:

linguistic score =

∑
(allscores)

6

where allscores indicates the list of linguistic rules
to be summed up in the equation.

This allowed us to obtain a total linguistic score
ranging from 0.0 to 1 for each of the generated
titles, 1 being a title that meets all six linguistic
rules, 0.0 being a title that flouts all rules. For each
title, we then multiplied this normalized linguistic
score by the SciBERT probabilities obtained in the
previous post-processing step to obtain a combined
SciBERT*linguistic score. Titles with the highest
SciBERT*linguistic score were chosen as the best
titles out of all generated options.

We also calculated the number of times a title
ranked first by the combined SciBERT*linguistic
score would also be the title ranked first by SciB-
ERT probability alone. We looked at the titles gen-
erated for 20,000 abstracts, and in this sample, the
highest-ranked title was the same in 18,770 cases
(= 1,230 differences). If we examine these discrep-
ancies more closely, we find that the majority occur
because some of the highest-ranked titles according
to SciBERT probability exceed 16 words in length.

While the addition of a linguistic post-processing
step has not yielded dramatically different results,
it did have an effect. It is possible that if more
stylistic rules were to be implemented, or if more
restrictive rules were to be adopted (for example,
maximum title length could be reduced to 13 words,
as suggested by different academic style guides),
this type of linguistic post-processing could be use-
ful in automatically discarding a larger chunk of
title generations that do not comply with academic
guidelines.

In Table 2 (third row), we also see how ROUGE
metrics on SciBERT probability ranking change if
linguistic scores are considered as well. We see in
particular that, if linguistic scores are also applied,
ROUGE scores are almost comparable to T5 model
with SciBERT probability ranking only (second
row). Note however that this could also be due

to the original title flouting one or more of the
linguistic rules we selected for this post-processing
step.

5 Human Evaluations

As a final step of this study, we sought to under-
stand the nuances of human evaluations vis-à-vis
machine-generated academic titles. To achieve this,
we asked three human annotators to evaluate the
titles that our model generated for a selection of
40 abstracts from our dataset. All three evaluators
were academics themselves.

We decided to include a human evaluation step
for several reasons. First of all, we wanted to deter-
mine whether title evaluation is a purely subjective
matter, or whether there is some consensus among
different individuals concerning what constitutes
a good or a bad title. Secondly, we wanted to de-
termine how feasible of a task it is to ask human
annotators to evaluate the quality of titles of aca-
demic papers. In the specialized realm of academic
articles, titles generally refer to highly technical in-
formation. This raised the question of the extent to
which human evaluators could accurately judge if
an academic title captures the essence of a paper’s
technical depth: even if one only selects evaluators
who are at least familiar with the field of research
of a particular set of abstracts, it is impossible to
expect that each evaluator will be able to fully un-
derstand all of the abstracts they are asked to review.
Finally, we were interested in determining whether
the subtleties introduced by the linguistic improve-
ments in our second post-processing step might
resonate more profoundly with human evaluators.

Evaluators were presented with the original ab-
stract, five machine-generated titles, and the origi-
nal title of the paper from which the abstract was
derived, resulting in a total of six titles to be evalu-
ated. Note that we randomly selected 40 abstracts
from the set of 1,230 abstracts for which SciB-
ERT and SciBERT*linguistics outputted distinct
highest-ranking titles (see again section 4.1).

The sequence in which the titles were presented
was randomized. Furthermore, to prevent any at-
tempt by the evaluators to evaluate the machine-
generated titles by comparing them with the origi-
nal title, evaluators were told that all titles, without
exception, were machine-generated.

The evaluators were asked to read the abstract,
read each of the six titles, and then pick i) what
they thought was the ‘best title’—that is, the title
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they perceived as the most fitting given the content
of the abstract and the intrinsic qualities of the title
itself, ii) what they thought was the second-best
title, and iii) what they thought was the worst title
out of all six title options. Our decision to request
evaluators to pinpoint the best, second-best, and
worst titles, rather than having them rank all six
titles from best to worst, was twofold. Firstly, we
anticipated that the deeply technical nature of some
abstracts could pose challenges in the ranking pro-
cess; we figured that simply selecting best, second-
best and worst title would be a more feasible task.
Secondly, we recognized that when presented with
a set of titles potentially bearing very close similar-
ities, distinguishing and ranking all six titles on a
gradient scale might be problematic. The inclusion
of the original title amidst the machine-generated
ones also served a dual purpose. First of all, we
wanted to assess if evaluators would rank the origi-
nal title of the paper as ‘best title’. Moreover, this
approach also allowed us to determine how fre-
quently machine-generated titles are perceived as
superior to the original title of a given paper.

5.1 Inter-Annotator Agreement
In order to ascertain the inter-annotator agreement
rate, we calculated Fleiss’ kappa (Fleiss, 1971).
The results are reported in Table 3:

Title Fleiss’ Kappa

Best Title 0.5805
Second Best Title 0.5195
Worst Title 0.5962

Table 3: Fleiss’ Kappa Results

For the interpretation of Fleiss’ kappa values, the
following ranges are generally used:

Range Interpretation

κ > 0.75 Excellent agreement
0.40 < κ ≤ 0.75 Fair to good agreement
κ ≤ 0.40 Poor agreement

Table 4: Interpretation of Fleiss’ Kappa Values

We further investigated the degree of consensus
among evaluators by calculating how many times
out of 40 (i.e. the total number of abstracts evalu-
ated by our annotators) at least two reviewers both
picked the same title as best, second-best, or worst
title:

• Number of times at least 2 reviewers agreed
on best title: 31 times

• Number of times at least 2 reviewers agreed
on second best title: 17 times

• Number of times at least 2 reviewers agreed
on worst title: 29 times

Based on these results, we can conclude that
evaluators seemed to frequently agree on what they
deemed to be the best and worst titles, even de-
spite the very technical nature of the abstracts and
titles they were asked to evaluate. This challenges
the notion that title evaluation is purely subjective,
suggesting that consensus among different individ-
uals is in fact quite attainable. Furthermore, these
results also indicate that the evaluators’ rankings
were deliberate and informed, rather than random.

5.2 Human Evaluation vs. Different Methods
As a final step, we wanted to determine how hu-
man evaluations relate to the different title selec-
tion methods we explored in this paper. To do so,
we went through the selections made by our three
evaluators, and created a set of so-called strong
candidate machine-generated titles. A machine-
generated title was deemed to be a strong candidate
if either of the following conditions were met:

i. At least two evaluators selected that specific
machine-generated title as their “best title” or
“second best title” choice.

ii. The machine-generated title was selected by
an evaluator who also selected the original
title for that abstract as their “best title” or
“second-best title” selection. E.g. if an evalua-
tor selected the original title as their “second-
best” choice, the machine-generated title that
they selected as their “best” choice was con-
sidered to be a strong candidate.

These two conditions rested on the following
assumptions:

• Some machine-generated titles might be per-
ceived by evaluators as being of higher quality
than the original paper title.

• If an evaluator chooses the original title as
their “best title” selection, we assume they
understand the contents of the abstract well
enough, and thus that any title that they rank
as “second-best title” must also be a good title
for that specific abstract.
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• If an evaluator chooses the original title as
their “second-best title” selection for a given
article, we assume they understand the con-
tents of the abstract well enough, and thus that
any title that they rank as “best title” must also
be both appropriate for that specific abstract,
and possibly a better title than the original
title.

• If at least two evaluators select a given
machine-generated title as their “best” or
“second-best” selection, the title must be a
good title for that abstract.

Based on these criteria, we compiled a set of
strong candidate machine-generated titles for each
of the 40 abstracts evaluated by human evaluators.
The set typically comprised a maximum of two
candidate titles per abstract.

After identifying the strong candidate titles for
each of the 40 abstracts, we compared how effec-
tive each of the three selection methods used in this
paper (Rouge, SciBERT alone and SciBERT* Lin-
guistics) was in capturing human rankings. Specifi-
cally, we checked if the title ranked as highest by
each of these three methods was part of the strong
candidates list. If the title ranked as highest by a
given method was part of the strong candidates list,
it was marked as a “correct selection".

Our aim was to ascertain the number of correct
selections each method achieves out of 40 trials
(i.e. our forty abstracts). The results are reported
below:

• Rouge (Oracles) made a correct selection 8
times,

• SciBERT made a correct selection 7 times,

• SciBERT*Linguistics topped the list with 10
correct selections.

Although the frequency of correct selections is
not particularly high, likely due to the challenging
nature of the task, it is interesting to see that Rouge
outperformed SciBERT, especially since we trained
SciBERT using similarities identified by Rouge.
Furthermore, it is noteworthy that the integration
of linguistic principles with SciBERT elevated the
number of correct selections from 7 to 10, making
this the most successful method when considering
human evaluations.

6 Concluding remarks

We hypothesized that automatically generating an
adequate research paper title can be treated as a
high-level text summarization problem: a title can
be seen as a very condensed summary of the paper’s
abstract. In this context, we have presented a novel
post-processing approach that combines a SciB-
ERT prediction model enhanced with linguistic-
stylistic rules to tackle the problem of finding ade-
quate titles for research papers.

We started by considering three powerful NLG
models (BART Large, T5 Large, FLAN T5 Large)
and evaluating their text-generation results against
the original titles. Out of these models, we chose
the best-performing one: T5 Large. T5 Large was
then set up to generate multiple diverse titles for the
same abstract. For each abstract, we generated five
different titles and again compared them against
the original title of the paper using ROUGE. Subse-
quently, we created a synthetic dataset by labeling
the title with the top ROUGE score as “1”, and
the title with the lowest ROUGE score as “0”; we
then trained SciBERT on this synthetic dataset. In
addition, we defined a set of linguistic rules a title
should adhere to. Based on these rules, we calcu-
lated a normalized score between 0 and 1 for each
generated title. We then multiplied this normal-
ized linguistic score by the SciBERT probabilities
obtained in the previous post-processing step.

We also assessed our title selection methods in
relation to human evaluations. The human evalua-
tions section was instrumental in providing insights
into the nuances of human perspectives concerning
machine-generated academic titles. Our findings
revealed that while title evaluation can be subjec-
tive to some extent, there exists a noticeable degree
of consensus among evaluators about what con-
stitutes a quality title. The performance compari-
son between various methods, with the linguistics-
enhanced SciBERT emerging as the most success-
ful in capturing human evaluations, further under-
scores the effectiveness of our proposed approach.

In the future, we would like to experiment with
generating titles using a paper’s conclusion section
rather than its abstract. Working with conclusions
is more complicated than working with abstracts,
as not all papers have a self-standing conclusion
section, yet an improvement of our results might be
obtained as conclusions often define in more detail
what the key contributions of a paper are.
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Abstract
Keeping track of all relevant recent publica-
tions and experimental results for a research
area is a challenging task. Prior work has
demonstrated the efficacy of information ex-
traction models in various scientific areas. Re-
cently, several datasets have been released for
the yet understudied materials science domain.
However, these datasets focus on sub-problems
such as parsing synthesis procedures or on sub-
domains, e.g., solid oxide fuel cells.

In this resource paper, we present MuLMS, a
new dataset of 50 open-access articles, span-
ning seven sub-domains of materials science.
The corpus has been annotated by domain ex-
perts with several layers ranging from named
entities over relations to frame structures. We
present competitive neural models for all tasks
and demonstrate that multi-task training with
existing related resources leads to benefits.

1 Introduction

Designing meaningful experiments in empirical
sciences requires maintaining a detailed overview
of the huge amounts of literature published every
year. Applying natural language processing (NLP)
in this context has risen to be an active research
area (Chandrasekaran et al., 2020; Beltagy et al.,
2021; Cohan et al., 2022). Besides the biomed-
ical field, which has been studied extensively in
the past decades (e.g., Collier et al., 2004; Co-
hen et al., 2012; Demner-Fushman et al., 2022),
the less-studied materials science domain has re-
cently received more attention (Mysore et al., 2019;
Friedrich et al., 2020; O’Gorman et al., 2021).

Materials science research aims to design and
discover new materials. Part of the papers is hence
often dedicated to the synthesis procedures, the
“recipe” for creating a material. Their extraction
from papers has been covered by Mysore et al.
(2019) and O’Gorman et al. (2021). Much materi-
als science research develops materials in the con-
text of creating a particular device, e.g., batteries or

photovoltaic panels. The device is tested in various
conditions and the literature needs to be analysed
for identifying promising set-ups. Friedrich et al.
(2020) address this for solid oxide fuel cells.

In this paper, we introduce MuLMS (the Multi-
Layer Materials Science corpus), a new dataset of
scientific publications annotated by domain experts
with named entity (NE) mentions, relations, and
frame structures corresponding to a broad notion
of measurements (see Figure 1). In contrast to
prior works, we include papers from a variety of
materials science sub-domains. To the best of our
knowledge, the existing datasets only annotate par-
ticular paragraphs or subsets of the sentences with
NE mentions. Our dataset is the first to exhaus-
tively annotate a large-scale collection of materials
science articles with NEs and facilitates novel se-
mantic search applications, e.g., answering search
queries such as “find a passage within a paper re-
porting a measurement using material X, condition
Y, and obtaining a value of at least Z.”

The design of MuLMS’ annotation scheme re-
sults from a collaboration of NLP and materials
science experts. Our inter-annotator agreement
study shows good agreement for most categories
and decisions. We propose several machine learn-
ing tasks on the annotated data and present strong
neural baselines for all tasks, which signals a high
level of consistency across the annotations in our
dataset. We cast detecting sentences describing
measurements as a sentence classification task and
provide a robust tagger for recognizing NEs. We
propose to treat relation and semantic role extrac-
tion on MuLMS in a single step using a dependency
parser that predicts relations between the NEs in a
sentence. According to our multi-task experiments
with related datasets, training jointly with MuLMS
is beneficial for performance on those datasets.

Our contributions are as follows. (1) We pub-
licly release a dataset of 50 open-access scientific
publications exhaustively annotated by a domain
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Electrochromic properties during water electrolysis were characterized for the WO3   films on transparent substrate ( indium tin oxide ).
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Figure 1: Multi-Layer Materials Science Corpus: named entity, relation and semantic role annotations.

expert with NE mentions, relations, and measure-
ment frames.1 (2) We define a set of NLP tasks
on MuLMS and provide strong transformer-based
baselines. Our code will be published. (3) We for-
mulate the relation and frame-argument extraction
as a single dependency parsing task, which extracts
all relations in a sentence in one processing step.
(4) We perform an extensive set of multi-task learn-
ing experiments with related corpora, showing that
MuLMS is a useful auxiliary task for two other
materials science NLP datasets.

2 Related Work

Several materials science NLP datasets have re-
cently been released, e.g., targeting NE recognition
(Yamaguchi et al., 2020; O’Gorman et al., 2021).
The Materials Science Procedural Text (MSPT) cor-
pus (Mysore et al., 2019) consists of paragraphs de-
scribing synthesis procedures annotated with graph
structures capturing relations and typed arguments.
SOFC-Exp (Friedrich et al., 2020) marks similar
graph structures describing experiments.

In this paper, we compare two state-of-the-art
approaches to Named Entity Recognition (NER).
Huang et al. (2015) use a CRF layer (Lafferty et al.,
2001) on top of a neural language model (in their
case a BiLSTM) for sequence-tagging related tasks.
Yu et al. (2020) treat NER as a graph-based depen-
dency parsing task by representing NEs as spans
between the first and last token of an entity. In the
materials science domain, Friedrich et al. (2020)
test a variety of embedding combinations in a CRF-
based tagger. O’Gorman et al. (2021) compare
different pre-trained transformers for token classifi-
cation. Both studies find SciBERT (Beltagy et al.,
2019), a BERT-style model pre-trained on scientific
documents, to be very effective.

Relation and Event Extraction. Friedrich et al.
1https://github.com/boschresearch/mulms-wiesp2023

(2020) treat their slot filling task in the SOFC sub-
domain as a sequence tagging task, assuming that
each sentence represents at most one experiment.
To predict a possible relation between two entities,
Swarup et al. (2020) retrieve a set of sentences simi-
lar to the input sentence, and learn to copy relations
from these sentences. Mysore et al. (2017) exper-
iment with unsupervised methods for extracting
action graphs for synthesis procedures.

An exhaustive overview of the literature on
biomedical relation extraction is out of the scope
of this paper. Recent works have used graph-
neural networks (Huang et al., 2020), or convo-
lutional neural networks (Ramponi et al., 2020).
Sarrouti et al. (2022) compare various pre-trained
transformer models. Semantic parsing of frame
structures (Fillmore and Baker, 2001) has been
addressed using graph-convolutional networks
(Marcheggiani and Titov, 2020), BiLSTMs (He
et al., 2018), and recently by generating structured
output using encoder-decoder models (Hsu et al.,
2022; Lu et al., 2021). Tackling semantic depen-
dency parsing with a biaffine classifier architecture
was first proposed by Dozat and Manning (2018).

3 MuLMS Corpus

In this section, we present our new corpus.

3.1 Source of Texts and Preprocessing

We select 50 scientific articles licensed under CC
BY from seven popular sub-areas of materials sci-
ence: electrolysis, graphene, polymer electrolyte
fuel cell (PEMFC), solid oxide fuel cell (SOFC),
polymers, semiconductors, and steel. The four
SOFC papers were selected from the SOFC-Exp
corpus (Friedrich et al., 2020). 11 papers were
selected from the OA-STM corpus2 and classi-
fied into the above subject areas by a domain ex-

2https://github.com/elsevierlabs/OA-STM-Corpus

85



pert. The majority of the papers were found via
PubMed3 and DOAJ4 using queries prepared by a
domain expert. For the OA-STM data, we use the
sentence segmentation provided with the corpus,
which has been created using GENIA tools (Tsu-
ruoka and Tsujii, 2005). For the remaining texts,
we rely on the sentence segmentation provided by
INCEpTION (Klie et al., 2018) with some manual
fixes. As shown in Table 1, documents are rather
long with a tendency to long sentences (but with
high variation due to, i.a., short headings).

3.2 Annotation Scheme
We annotate various layers: NEs, relations, and
frame structures representing measurements.

3.2.1 Named Entities
We annotate the following materials-science spe-
cific NE mentions and assign the following NE
types to these mentions:
MAT: mentions of materials described by their

chemical formula (WO3) or its chemical name
(indium tin oxide).

FORM: mentions of the form or morphology of
the material, e.g., thin film, gas, liquid, cubic.

INSTRUMENT: mentions of devices used to per-
form a materials-science-related measurement,
e.g., Olympus BX52 microscope.

DEVICE: mentions of devices (target products)
whose construction or improvement is the aim
of the research (e.g., photodetector, transistor,
supercapacitor). DEVICE is not used for instru-
mentation devices that are only used as a tool.

NUM: mentions of numbers such as 0.46.
UNIT: mentions of units such as nm or V.
RANGE: mentions of numeric expressions indicat-

ing ranges, e.g., 0.46±.11
VALUE: nested type capturing expressions of val-

ues usually composed of a NUM, RANGE and a
UNIT, e.g., ~5 x 3mm2

CITE: citations, e.g., Setman et al. or [13].
PROPERTY: expressions referring to properties

of materials or conditions in experiments, e.g.,
stress rate or electron conductivity.

TECHNIQUE: mentions of experimental tech-
niques used in the characterization steps, e.g.,
Scanning electron microscopy (SEM).

SAMPLE: mention of the material or a component
made of materials studied in a measurement, ei-
ther referred to by a particular name or its com-
3https://pubmed.ncbi.nlm.nih.gov
4https://doaj.org

#Documents 50
#Documents train / dev / test 36 / 7 / 7
#Sentences 10186
#Sentences/Document 203.7±73.2
#Tokens/Sentence 28.7±17.9

Table 1: Basic corpus statistics for MuLMS.

position, its batch name (Aq-825) or by referring
to the whole component (MEA-Pt/C) or to part
of the material’s structure (ionomer patches). In
simulation papers, the SAMPLE may also be the
computational model under study (RBF-ANN).

3.2.2 Relations and Measurement Frame
We treat measurement annotation in a frame-like
(Fillmore and Baker, 2001) fashion, using the span
type MEASUREMENT to mark the triggers (e.g.,
was measured, is plotted) that introduce the Mea-
surement frame to the discourse. About 88% of
the triggers are verbs. The remaining 12% occur
in figure captions without verb phrases and are
annotated either on nouns (Comparison) or, in ab-
sence of more suitable phrases, on figure labels
such as Figure 17. The trigger annotations of these
sentences serve as the root of the tree/graph anno-
tations as illustrated in Figure 1.

There are also cases in which the Measurement
frame is evoked, but there are no technical details or
results that we can extract about the measurement.
We mark the triggers of these sentences with the
tag QUAL_MEAS (qualitative mention of a mea-
surement). An example of such a sentence is “We
compare a critical volume to be detached from the
different nanostructures.”

Measurement-related Relations. We annotate
several relations that start at a MEASUREMENT tag
and that end at the annotations of the corresponding
slot fillers within the sentence. Consider the fol-
lowing sentence: “To characterize the ORR activity
of the catalyst, linear scan voltammetry (LSV) was
tested from 0 to 1.2 V on an RDE with a scan rate
of 50 mV/s in O2-saturated HClO4 solution.”

measuresProperty: indicates the PROPERTY (e.g.,
ORR activity) that is measured.

conditionSampleFeatures: indicates the SAMPLE

or MATERIAL whose property is measured. In
the above example, the sample is the catalyst.

usesTechnique: relates to the TECHNIQUE (e.g.,
linear scan voltammetry) used in a measurement.

conditionInstrument: refers to the INSTRUMENT

used to make a measurement, e.g., RDE/rotating
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Relation Example

hasForm siliconMAT–hasForm→ hexagonalFORM

usedIn SicMAT –usedIn→MOSFETDEVICE

usedAs PtNi3MMAT –usedAs→ catalysts
dopedBy chlorinatedMaterial–dopedBy→SiCMAT

Table 2: Measurement-independent relations annotated
in MuLMS. MAT is short for MATERIAL.

Label Count % Label Count %

MAT 15596 33.6 CITE 1709 3.7
NUM 6081 13.1 SAMPLE 1461 3.2
VALUE 4852 10.5 TECHNIQUE 1036 2.2
UNIT 4330 9.3 DEV 808 1.7
PROPERTY 3925 8.5 RANGE 736 1.6
FORM 3568 7.7 INSTRUMENT 378 0.8
MEASUREMENT 2171 4.7 total 46,351 -

Table 3: Corpus counts for named entity annotations.

disk electrode.
conditionProperty: a property that is a condition

in the experiment, e.g., scan rate (which in turn
has the propertyValue of 50 mv/s).

propertyValue: connects the mention of a PROP-
ERTY and that of its corresponding VALUE. This
relation may also occur if a mention of a PROP-
ERTY occurs independently of a measurement.

conditionEnvironment: identifies the MATE-
RIALs (e.g., O2 and HClO4) and VALUEs (e.g.,
an operating temperature of 30°C) that provide
the environment of the measurement.

takenFrom: connects the MEASUREMENT with
the bibliographic reference CITE from which the
setup has been inspired or taken over.

In most cases, a conditionProperty or a
measuresProperty connects the MEASUREMENT

annotation to a PROPERTY node, at which a
propertyValue relation starts that ends at the re-
spective VALUE. However, in some cases, the con-
dition or measured property is not mentioned ex-
plicitly. In this case, we link the VALUE directly
to the MEASUREMENT node via a conditionProp-
ertyValue or a measuresPropertyValue link. For
consistency reasons, we also add these links in
cases that mention the property explicitly, turning
the trees into graph structures. Out of the added
conditionPropertyValue links, 967 are for such ex-
plicit cases, while the other 206 describe implicit
cases. In the case of measuresPropertyValue, 722
links are for explicit cases and 36 for implicit cases.

Further Relations. In the following, we explain
relations that can appear independently of measure-

Label Count % Label Count %

hasForm 2910 17.3 meas.Prop.Val. 751 4.5
measuresProperty 2080 12.4 usedTogether 672 4.0
usedAs 1839 11.0 conditionEnv. 549 3.3
propertyValue 1794 10.7 usedIn 434 2.6
conditionProperty 1648 9.8 conditionInstr. 357 2.2
conditionSample 1434 8.5 takenFrom 118 0.7
cond.Prop.Value 1158 6.9 dopedBy 65 0.4
usesTechnique 985 5.9 total 16,794

Table 4: Corpus counts for measurement relations.

MEAS QUAL_MEAS OTHER

MEAS 48 6 6
QUAL_MEAS 12 37 11
OTHER 10 17 92

Table 5: Inter-annotator agreement for identifying mea-
surement sentences: confusion matrix.

ments. Examples are shown in Table 2.

hasForm: connects mention of MATERIAL and
the corresponding FORM annotation.

usedIn: connects MATERIAL and the DEVICE it
is used in. In Table 2, MOSFET stands for Metal
Oxide Semiconductor Field-Effect Transistors.

usedAs: links a specific MATERIAL mention with
a more generic one such as catalyst, a material
class defined by its function.

dopedBy: indicates dopants (e.g., chlorine), i.e.,
impurities added to a main material (e.g., SiC).

usedTogether: connects two MATERIALs if they
are used together in an experiment, i.e., if the
materials are part of an assembly or a mixture.

3.3 Corpus Statistics
We now analyze our corpus and provide detailed
corpus statistics. In total, there are 46,351 NE
annotations. Table 3 shows the counts by NE la-
bel. There are roughly 1.5 MAT annotations per
sentence as these are nested and occurrences of
composite materials often result in many combined
MAT tags. Table 4 reports the counts of anno-
tated relations (16,794 in total), with hasForm as
the most frequent relation with 2910 instances and
dopedBy the least frequent with only 65 instances.

Out of all 10186 sentences, 2111 (20.7%) de-
scribe a measurement (i.e., they contain at least one
MEASUREMENT annotation). On average, each
document contains 43.4 MEASUREMENT annota-
tions. In addition, there are 1476 sentences (14.5%)
marked as containing a QUAL_MEAS, with 40 sen-
tences of these also containing a MEASUREMENT

annotation.
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Label P R F1 Label P R F1

MAT 96.7 91.2 93.9 CITE 97.4 97.4 97.4
NUM 98.9 100.0 99.4 SAMPLE 3.1 12.5 4.7
VALUE 100 100 100.0 TECHN. 77.5 59.6 67.4
UNIT 97.9 100.0 98.9 DEVICE 96.0 82.8 88.9
PROPERTY 42.6 37.7 40.0 RANGE 100.0 100.0 100.0
FORM 95.7 86.3 90.8 INSTR. 80.0 76.9 78.4
MEAS. 44.6 51.0 47.6 average 79.3 76.6 77.9

Table 6: Inter-annotator agreement: named entities.

3.4 Inter-Annotator Agreement (IAA)

Our entire dataset has been annotated by a graduate
student of materials science, who was also involved
in the design of the annotation scheme. We perform
two agreement studies, comparing to the annota-
tions of a second annotator with a PhD degree in
environment engineering and several years of ex-
perience in materials science research.

Agreement on identifying Measurement sen-
tences. In this agreement study, we estimate the
degree of agreement whether a sentence expresses
a MEASUREMENT, a QUAL_MEAS, or whether it
does not express a measurement at all. We sam-
ple 60 sentences marked with MEASUREMENT, 60
sentences marked with QUAL_MEAS, and 120 sen-
tences not marked as either by the first annotator.
Table 5 shows the confusion matrix for the 239
sentences for which both annotators provided a
label. One automatically selected sentence was
not labeled by one of the annotators due to in-
comprehensibility. In terms of Cohen’s κ (Co-
hen, 1960), agreement amounts to 59.2, indicat-
ing moderate to substantial agreement (Landis and
Koch, 1977). When collapsing MEASUREMENT

and QUAL_MEAS, κ is 63.4 (substantial).
Agreement on named entities. We next com-

pute agreement for NE and relation annotations.
IAA on “easy” types such as MAT, NUM, UNIT,
VALUE and RANGE has been shown to be very
high in prior work (Friedrich et al., 2020). Hence,
as our resources are limited, we provide annota-
tions of these types for correction to the second
annotator. We sample 134 sentences such that each
entity type occurs at least 25 times in the anno-
tations of the first annotator and have the second
annotator correct or add entity annotations. We
then compare the annotated sets of NE mentions
using precision and recall (for a justification of
this choice of agreement metrics, see Appendix C).
Results using relaxed matching (containment) are
shown in Table 6 (detailed counts in Appendix C).

Label P R F1 κ matches

propertyValue 81.2 81.2 81.2 0.88 26
condSampleFeat. 43.1 40.0 41.5 0.23 22
usedIn 40.0 52.2 45.3 0.55 12
usesTechnique 72.9 67.3 70.0 0.86 35
hasForm 54.7 71.4 61.9 0.64 35
takenFrom 33.3 63.6 43.7 0.57 7
measuresProp. 80.5 72.9 76.5 0.80 70
dopedBy 35.3 50.0 41.4 0.25 6
conditionProp. 27.7 59.1 37.7 0.31 13
conditionInstr. 24.0 60.0 34.3 0.44 6
conditionEnv. 0.0 0.0 0.0 0.00 0
usedAs 23.5 85.7 36.9 0.37 12
usedTogether 13.8 28.6 18.6 0.20 4

Table 7: Inter-annotator agreement: relations.

For most types, scores are in the expected range
of difficult semantic annotation tasks. Agreement
on identifying Measurement sentences is good; the
decision of where exactly to place the MEASURE-
MENT annotation differs between annotators.

Agreement on relations. We sample 178 sen-
tences in which each relation occurs at least 25
times according to the first annotator. We keep NE
annotations and ask the second annotator to add
relations. Table 7 shows the results in terms of pre-
cision, recall, and κ per relation type. The latter has
been computed by treating all pairs of NE annota-
tions as potential relations, using NO_REL if no
relation has been annotated. Overall κ on relations
is 0.61 (substantial). For each relation label, we
can map all other relation types to OTHER and
compute agreement for the binary decision whether
the label is present or not (analysis suggested by
Krippendorff (1989)). κ aims to quantify the de-
gree of agreement above chance. Interpreting our
κ scores according to the scale of Landis and Koch
(1977), we reach at fair agreement for condition-
PropertyValue, usedTogether, conditionSampleFea-
tures, dopedBy, and usedAs. We reach moderate
agreement for usedIn, takenFrom, and condition-
Instrument. For the practically important relations
propertyValue, measuresProperty, and usesTech-
nique, we even reach almost perfect agreement.

For the non-easily identifiable types, post-hoc
discussion with the second annotator (who did not
receive an extensive training on the task) concluded
it was not always clear to them when using related
labels (e.g., conditionProperty and conditionEnvi-
ronment). Yet, these labels can be learned with
good or acceptable accuracy (see Appendix E), in-
dicating that the primary annotator has used the
labels consistently.
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4 Task Definitions and Modeling

In this section, we define several NLP tasks for
MuLMS and describe our computational models.

4.1 Pre-trained Models

We use BERT (Devlin et al., 2019) as the underly-
ing text encoder for all of our models. We also use
variants of BERT, namely SciBERT (Beltagy et al.,
2019), which has been pre-trained on articles in the
scientific domain, and MatSciBERT (Gupta et al.,
2022), a version of SciBERT further pre-trained
on materials science articles. We use the uncased,
768-dimensional variant of each model, which we
fine-tune.

4.2 Detecting Measurements

We model the task of classifying whether
a sentence contains a MEASUREMENT or a
QUAL_MEAS annotation as a ternary sentence clas-
sification task, i.e., it is also possible that a sentence
does not refer to any measurement. As we are pri-
marily interested in detecting MEASUREMENT, we
map the few multi-label cases carrying both pos-
itive labels to MEASUREMENT. We use a linear
layer plus softmax with the CLS token embedding
as input. For training, we downsample the amount
of non-measurement sentences.

4.3 Named Entity Recognition (NER)

We compare two state-of-the-art models for NER,
(a) a sequence tagger and (b) a dependency parser.
For the sequence tagger, we encode the NE labels
using the nested BILOU scheme (Alex et al., 2007),
which leverages a label set of combined types con-
structed from the training set for nested NEs. As
there are only very few cases (about 0.65% of all
NE annotations) where a token receives more than
three stacked NE labels, in order to avoid sparsity
issues, we consider only the “bottom” three lay-
ers of stacked entities. We feed the contextualized
embeddings of the last transformer layer of the re-
spective first wordpiece token of each “real” token
into a linear layer and then use a CRF (Lafferty
et al., 2001) to optimize predictions for the entire
sequence.

Modeling NER as a dependency parsing task
(Yu et al., 2020) can easily account for nested
NEs. The main idea is to predict edges reach-
ing from the end token of an NE to its start to-
ken as depicted in Figure 2. We adapt the STEPS
parsing pipeline (Grünewald et al., 2021a) to the

PROPERTY
TECHNIQUE

MAT

Electrochromic properties during water electrolysis

PROPERTY MAT

TECHNIQUE

Figure 2: NER as dependency parsing (Yu et al., 2020).

task. There are three combinations of tags in our
dataset that occasionally cover the exact same span
and that occur more than 20 times: VALUE+NUM,
VALUE+RANGE and MAT+FORM. We hence in-
troduce the above combined labels. For any other
infrequent conflicting labels, we do not add extra
tags, i.e., the model can never catch these cases.
We decide on this slight restriction of the model
capabilities in order to avoid sparsity issues. In the
evaluation, we do not filter for these cases but of
course use all nested NEs as annotated.

4.4 Relation Extraction

Given an input sentence along with all named enti-
ties within it, as well as their types (either gold or
predicted depending on the experimental setting),
we predict which (if any) relation is present be-
tween them. We treat all relations in a single model
and predict all relations of a sentence simultane-
ously by modeling relation extraction as a graph
parsing task. Following Toshniwal et al. (2020), we
first create an embedding ei for the ith NE in the
sentence by concatenating the token embeddings
of its first and last token (ei,START, ei,END). We also
concatenate a learned embedding for the NE’s label
(ei,LABEL): ei = ei,START ⊕ ei,END ⊕ ei,LABEL

Considering NEs as nodes in a graph, we use a
biaffine classifier architecture (Dozat and Manning,
2017) using the implementation of Grünewald et al.
(2021a,b) to predict the relation between each pair.
The non-existence of a relation is encoded as sim-
ply another label (∅). For details on the parser
architecture, see Appendix B.

5 Experiments

We now detail our experimental results.
Experimental Settings. We split our corpus into

train, dev, and test sets on a per-document basis.
Within the train set, we provide five distinct tune
splits (train1 to train5). For all experiments and for
hyperparameter tuning, we always train five mod-
els. Similar to cross-validation, we train on four
folds and use the fifth “training fold” for model
selection (cf. van der Goot (2021) for details). Hy-
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MEASUREMENT QUAL_MEAS
LM (sampling) P R F1 P R F1

Random baseline 24.7 19.7 21.9±2.4 15.1 14.4 14.7±1.5

BERT(0.7) 74.1 71.4 72.5±2.1 49.9 51.6 50.6±0.7

SciBERT(0.7) 71.1 79.5 75.0±0.7 52.7 52.8 52.7±1.4

MatSciBERT(0.85) 70.6 80.1 74.9±1.3 52.8 56.9 54.7±1.0

human agreement* 68.6 80.9 73.8 61.7 61.7 61.7

Table 8: Ternary sentence classification results for iden-
tifying measurement sentences on test set. “Sampling”
indicates amount of OTHER sentences used for training.
*estimated on subset of data.

Model LM Micro F1 Macro F1

Dependency BERT 73.0±0.7 61.7±2.3

Parser SciBERT 76.5±0.3 65.8±0.9

MatSciBERT 77.3±0.3 67.6±1.4

CRF Tagger BERT 75.3±0.6 63.2±0.7

SciBERT 78.7±0.4 69.3±1.0

MatSciBERT 79.6±0.4 70.7±0.7

Table 9: Named entity recognition results on test set.

perparameters are chosen based on the best dev
results, and we finally report results for the test set.
The splits are the same across all tasks. Because the
training data varies across the five runs for which
we report results, standard deviations are usually
larger than when using the same training data. For
hyperparameter settings, see Appendix A.

5.1 Identifying Measurement Sentences
Table 8 reports the results for identifying sentences
that contain a MEASUREMENT or a QUAL_MEAS

annotation. In each experiment, we tune the down-
sampling rate for the majority class OTHER and the
learning rate (using grid search from 1e-4 to 1e-7).
The random baseline assigns labels according to
the percentage of instances in the (full) training
set carrying a particular label. The average overall
accuracy of the MatSciBERT classifier is 78.2%.
SciBERT and MatSciBERT perform similarly, with
MatSciBERT having a small edge. Identification of
MEASUREMENT is comparable to our estimate of
human agreement. For identifying QUAL_MEAS,
there is headroom.

5.2 Named Entity Recognition Results
Table 9 shows the results for named entity recog-
nition. Again, MatSciBERT performs best with
Micro F1 scores approaching 80, which indicates
that NE mentions are consistently annotated in
MuLMS. The CRF-based tagger outperforms the
dependency-parser-based NER model by a consid-

dev test
LM Micro F1 Macro F1 Micro F1 Macro F1

Maj. basel. 38.3±0.0 29.4±0.0 37.2±0.0 27.4±0.0

BERT 69.5±0.5 63.4±1.0 63.5±0.6 57.7±1.1

SciBERT 72.5±0.8 65.7±0.6 67.5±0.9 62.0±2.2

MatSciBERT 73.2±1.0 66.5±1.1 67.6±1.0 62.0±1.0

Table 10: Relation extraction results: gold entities.

erable margin. For detailed per-label statistics, see
Appendix E. Precision and recall are approximately
balanced for all labels. An exception is SAMPLE,
which is both infrequent in the dataset and hard to
identify for humans. Both models suffer from low
recall for this tag.

5.3 Relation Extraction Results

Table 10 shows the results for relation extraction
on gold entities. A predicted relation is counted
as correct if and only if there is a relation with
the same start span, end span, and relation label
in the set of gold relations for the sentence. The
majority baseline assigns to each pair of entities
the relation that is most common in the training set
for the respective entity types of the governing and
dependent spans (see Appendix E).

The results demonstrate that a biaffine depen-
dency parsing approach achieves robust perfor-
mance overall and outperforms the baseline by a
substantial margin. The two models trained on
scientific text outperform BERT. Their results are
similar, with MatSciBERT having a slight edge.

Analysis of per-label scores (see Appendix E)
for MatSciBERT) shows that the highest scores are
achieved for conditionInstrument (92.2 F1), uses-
Technique (91.0 F1), and takenFrom (84.7). This
is somewhat surprising especially for conditionIn-
strument and takenFrom, as these are among the
rarest relation types in the corpus (see Table 4).
However, our majority baseline achieves high ac-
curacies on these relation types as well (>90 F1 for
conditionInstrument and usesTechnique), i.e., they
are easily inferable from entity types. The worst
performance is observed on the relation types used-
Together (4.0 F1), dopedBy (22.7 F1), and usedIn
(37.9 F1). These relations occur relatively rarely
and also cannot be inferred from entity types.

Relation extraction on predicted entities. Fi-
nally, we also run our relation extraction module on
predicted named entities using the respective best-
performing models (both based on MatSciBERT).
Models are evaluated as above, with the additional
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Dataset LR Micro F1 Macro F1

MuLMS 1e-4/7e-3 79.6±0.4 70.7±0.7

+ SOFC-Exp 79.5±0.4 70.4±1.3

+ MSPT 79.2±0.6 69.9±0.8

SOFC-Exp 3e-4/7e-3 83.4±0.9 81.0±1.0

+ MuLMS 81.9±1.7 79.6±1.7

MSPT 5e-5/9e-3 81.6±0.4 57.8±0.6

+ MuLMS 80.4±0.4 56.4±0.8

Table 11: NER MTL results: MatSciBERT tagger.

requirement that the boundaries of start/end spans
of a predicted relation must also exactly match
those of the respective gold spans. Prediction ac-
curacy drops substantially: to micro-F1 scores of
42.5 and 36.5 on dev and test, respectively, cor-
responding to macro-F1 scores of 37.9 and 32.8.
The reason for this is error propagation as relations
can only be retrieved if the entities are predicted
correctly, and as incorrectly labeled entities can
mislead the relation classifier.

5.4 Multi-Task Learning Across Datasets

To find out whether information extraction accu-
racy can be increased by employing multi-task
learning (MTL), we perform a series of experi-
ments in which we combine MuLMS training data
with NE and relation data from other materials sci-
ence datasets, namely the SOFC-Exp and MSPT
corpora (see Sec. 2).5 In all experiments, we use
a shared MatSciBERT and one classification head
for each task (dataset). When reporting results on
MuLMS, we use the same setup as before, but add
the complete training sets of SOFC-Exp or MSPT
during training. When reporting results on SOFC
and MSPT, we train on all of their training data
and the complete training data of MuLMS and per-
form early stopping on dev. For these experiments,
reported scores are averages over 5 runs with dif-
ferent random seeds.

For NER (Table 11), we do not observe overall
improvements. We hypothesize that this is because
in SOFC-Exp, NE types are much coarser-grained,
and in MSPT, NE annotations are focused on syn-
thesis procedure paragraphs only. Nevertheless, as
can be seen by the per-label scores in Appendix E,
average scores on MuLMS are mainly hurt by de-
creases on SAMPLE, while scores for RANGE in-
crease considerably by up to 3.9%.

5We removed one document from the test split of the
SOFC-Exp corpus that is also part of the train set of MuLMS.

dev test
Dataset Micro F1 Macro F1 Micro F1 Macro F1

MuLMS 73.2±1.0 66.5±1.1 67.6±1.0 62.0±1.0

+ SOFC 72.5±0.9 65.8±0.7 68.1±0.7 61.1±0.7

+ MSPT 73.9±0.4 67.4±0.4 68.7±0.7 63.7±0.7

SOFC-Exp 71.3±0.6 62.8±2.1 66.9±1.6 59.8±1.5

+ MuLMS 72.3±0.5 64.3±3.7 68.7±1.5 60.9±3.6

+ MSPT 72.3±0.9 63.1±2.6 67.6±2.0 60.8±4.3

MSPT 84.2±0.6 82.5±0.7 84.6±0.8 83.0±0.8

+ MuLMS 85.3±0.2 83.4±0.8 85.6±0.4 84.1±0.6

+ SOFC 83.7±1.4 81.8±1.4 84.7±1.1 83.2±1.4

Table 12: Relation extraction multi-tasking results using
MatSciBERT-based parser.

Results for MTL for relations are shown in Ta-
ble 12. We observe that adding MuLMS to the
training data of both SOFC-Exp and MSPT re-
sults in improvements. Incorporating SOFC-Exp
instances in the training does not meaningfully in-
crease prediction accuracy on MuLMS, whereas
incorporating instances from MSPT leads to mod-
est improvements. Intuitively, this makes sense:
relations in SOFC-Exp focus on a specific type
of experiment, while MuLMS covers a broader
range of measurements. Similarly, some MuLMS
relations bear resemblance to MSPT relations (e.g.,
those dealing with instruments or apparatus), which
explains why training jointly is beneficial.

6 Conclusion and Outlook

In this resource paper, we have presented a new
large-scale dataset of 50 scientific articles in the
domain of materials science exhaustively anno-
tated with named entity mentions, relations, and
measurement-related frames. Our inter-annotator
agreement study shows good agreement for most
decisions. Our experiments with state-of-the-art
neural models highlight that most distinctions can
be learned with good accuracy, and that synergies
can be achieved by training jointly with existing
more specific materials-science NLP datasets.

Future work is needed to improve on end-to-end
or joint models of NER and relation extraction as
our experiments showed that a pipeline-based set-
ting suffers from error propagation. A potential
next step is to adapt sequence-to-sequence models
to the structure induction tasks of MuLMS, fol-
lowing ideas of (Hsu et al., 2022; Lu et al., 2021).
Finally, employing data augmentation techniques
in particular for the less frequent relation types is a
viable path for future work.
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Limitations

As discussed in Sec. 3.4, we expect our inter-
annotator agreement scores to underestimate the
reproducibility of the task. It is, unfortunately, not
trivial to find annotators with the required back-
ground knowledge. Hence, scores reflect agree-
ment after only an initial very brief training phase,
but nevertheless (in our opinion) give useful in-
sights on the relative difficulty of the labeling deci-
sions.

In our relation extraction experiments, we use
label embeddings based on either gold or predicted
entity labels (depending on the experimental setup)
as an input to our system. Providing gold entity
label information in particular constitutes a setting
that is considerably easier for a relation classifier
than providing no label information. Using pre-
dicted entity mention and labels showed to suffer
from error propagation. In future work, it may be
interesting to evaluate the performance of a rela-
tion extraction system that is not given label infor-
mation, or that predicts entity labels jointly with
relations.

Ethical Considerations

The annotators participating in our project were
completely aware of the goal of the annotations
and even helped designing the annotation scheme.
They gave explicit consent to the publication of
their annotations. The main annotator was paid
considerably above our country’s minimum wage.
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Appendix

A Hyperparameters

We use AdamW (Loshchilov and Hutter, 2019) as
optimizer for all our models. We use an inverse
square-root learning rate scheduler similar to the
one used by Vaswani et al. (2017) where ws refers
to the number of warmup steps:

lr =
√
ws ·min( 1√

step_num
, step_num · ws−1.5)

For our measurement identification experiments,
we downsample the amount of non-measurement
sentences since they represent the majority in the
training data. We tune this downsampling rate per
model since each BERT variant has been shown
to prefer a slightly different one. We apply early
stopping after 3 epochs without improvement in
terms of F1.

Our NER sequence tagging models are trained
with two separate learning rates; one for BERT +
linear output layer and another one for the CRF
output layer. Both learning rates are reported in
the respective column of Table 13. We train for 60-
100 epochs, depending on the size of the combined
dataset, and take the model with the best evaluation
score during this period.

For relation extraction, we use a base learning
rate of 4e-5 for all experiments, which we found
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Model LM LR

CRF BERT 1e-4/7e-3
SciBERT 5e-5/7e-3
MatSciBERT 1e-4/7e-3

Dep. Pars. BERT 2e-4
SciBERT 9e-5
MatSciBERT 3e-4

Table 13: Hyperparameters: Learning rates for NER
models.

to perform best in preliminary experiments. We
employ early stopping with a patience of 15 epochs
for all experiments.

Our models are trained with Nvidia A100 and
V100 GPUs using the PyTorch framework.

B Details on Biaffine Parser Architecture

We here describe the biaffine parser architecture
used to predict relations between named entities.
Taking as input the NE embeddings described in
Sec. 4.4, head and dependent representations for
the i’th NE are computed via two single-layer feed-
forward neural networks:

hhead
i = FNNhead(ei)

hdep
i = FNNdep(ei)

These representations are then fed to a biaffine
classifier that maps head–dependent pairs onto logit
vectors si,j whose dimensionality corresponds to
the inventory of relation labels. Using the softmax
operation, these scores are transformed into proba-
bility distributions P (yi,j) over relation labels:

Biaff(x1,x2) = x⊤
1 Ux2 +W (x1 ⊕ x2) + b

si,j = Biaff
(
hhead
i ,hdep

j

)

P (yi,j) = softmax(si,j)

The predicted relation for a pair of named entities
is the one receiving the highest probability (which
may be ∅, i.e., no relation).

Token embeddings. The token embeddings
ei,START and ei,END, which form part of the NE em-
beddings ei, are computed as a learned scalar mix-
ture of BERT layers as described by Kondratyuk
and Straka (2019).

C Detailed Corpus Statistics

Table 14 shows the NE counts in MuLMS by datas-
plit.

Table 15 and Table 16 show the detailed counts
for our inter-annotator agreement study.

Choice of agreement metrics for evaluating
agreement on named entity annotations. The
task of identifying and labeling NE mentions is a
sequence labeling task, hence, κ is not applicable.
Brandsen et al. (2020) provide a good explanation
of why this is the case in their section 5.1. Using
unitizing αU is an option, but there is no standard
implementation or interpretation for NE annota-
tions in the NLP community, and it does not work
for overlapping annotations (which we have in our
dataset). We opted for using precision and recall,
which are intuitively interpretable (How many of
the instances of one type marked by one annota-
tor have also been marked by the respective other
annotator?). Hripcsak and Rothschild (2005) con-
vincingly argue (with a very simple proof) that for
sequence labeling tasks such as NEs, F1 actually
approaches κ.

Label total train dev test

MAT 15596 10875 2318 2403
NUM 6081 4142 1077 862
VALUE 4852 3266 895 691
UNIT 4330 2880 789 661
PROPERTY 3925 2867 598 460
FORM 3568 2716 345 507
MEASUREMENT 2171 1531 345 295
CITE 1709 1280 274 155
SAMPLE 1461 1031 249 181
TECHNIQUE 1036 755 146 135
DEV 808 459 235 114
RANGE 736 546 105 85
INSTRUMENT 378 278 50 50

Table 14: Label counts for named entities in MuLMS.

D SOFC-Exp and MSPT Corpora

In Sec. 5.4, we perform several multi-task learn-
ing (MTL) experiments with MuLMS and two
additional NLP datasets in the materials science
domain, SOFC-Exp (Friedrich et al., 2020) and
MSTP (Mysore et al., 2019). We here describe
them briefly.

There are 4 named entities in the SOFC-Exp
corpus: MATERIAL, which refers to mentions of
materials or chemical formulas, VALUE, which
denotes numerical values and their corresponding
physical unit, DEVICE, which marks device types
used in an experiment, and EXPERIMENT, which
indicates frame evoking words. Furthermore, there
are 16 distinct slots that are modeled as relations
between experiment frame evoking word and cor-
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Label P R matches matches # A1 # A2
exact relaxed

MAT 96.7 91.2 144 145 150 159
NUM 98.9 100.0 86 86 87 86
VALUE 100.0 100.0 53 54 54 54
UNIT 97.9 100.0 47 47 48 47
PROPERTY 42.6 37.7 21 29 68 77
FORM 95.7 86.3 44 44 46 51
MEAS. 44.6 51.0 17 25 56 49
CITE 97.4 97.4 38 38 39 39
SAMPLE 3.1 12.5 1 1 32 8
TECHNIQUE 77.5 59.6 25 31 40 52
DEV 96.0 82.8 18 24 25 29
RANGE 100.0 100.0 24 25 25 25
INSTRUMENT 80.0 76.9 18 20 25 26

Table 15: Inter-annotator agreement: named entities.
Precision and recall computed from relaxed matches.

Label P R matches # A1 # A2

propertyValue 81.2 81.2 26 32 32
usedIn 40.0 52.2 12 30 23
hasForm 54.7 71.4 35 64 49
measuresProperty 80.5 72.9 70 87 96
conditionProperty 27.7 59.1 13 47 22
conditionEnvironment 0.0 0.0 0 19 4
usedTogether 13.8 28.6 4 29 14
conditionSampleFeatures 43.1 40.0 22 51 55
usesTechnique 72.9 67.3 35 48 52
takenFrom 33.3 63.6 7 21 11
dopedBy 35.3 50.0 6 17 12
conditionInstrument 24.0 60.0 6 25 10
usedAs 23.5 85.7 12 51 14

Table 16: Inter-annotator agreement for relations.

responding entity. Table 17 shows the counts for
these relations. These counts are not equal to the
ones reported by Friedrich et al. (2020) since we
have to remove relations that span across multiple
sentences as this case cannot be handled by our
relation extraction pipeline.

The MSPT corpus introduces additional the 21
entities:

• PROPERTY-MISC

• PROPERTY-UNIT

• NUMBER

• CHARACTERIZATION-APPARATUS

• APPARATUS-UNIT

• CONDITION-MISC

• META

• SYNTHESIS-APPARATUS

• OPERATION

• AMOUNT-MISC

Label train dev test

AnodeMaterial 220 32 26
CathodeMaterial 173 71 37
Conductivity 36 19 23
CurrentDensity 59 6 17
DegradationRate 15 4 1
Device 311 59 109
ElectrolyteMaterial 187 22 120
FuelUsed 124 28 40
InterlayerMaterial 34 17 6
OpenCircuitVoltage 41 3 25
PowerDensity 138 24 70
Resistance 118 15 57
SupportMaterial 88 13 2
TimeOfOperation 42 3 12
Voltage 30 3 14
WorkingTemperature 330 63 138

Table 17: SOFC-Exp relation counts in our setup.

• AMOUNT-UNIT

• REFERENCE

• PROPERTY-TYPE

• MATERIAL

• MATERIAL-DESCRIPTOR

• APPARATUS-DESCRIPTOR

• APPARATUS-PROPERTY-TYPE

• CONDITION-UNIT

• NONRECIPE-MATERIAL

• CONDITION-TYPE

• BRAND

Table 18 lists the counts of the 14 relations of the
MSPT dataset that we use in our MTL experiments.

Label train dev test

Recipe-target 270 53 92
Solvent-material 352 61 107
Atmospheric-material 144 25 35
Recipe-precursor 654 152 199
Participant-material 1315 236 400
Apparatus-of 358 56 93
Condition-of 1378 232 415
Descriptor-of 1157 193 333
Number-of 2114 422 663
Amount-of 1099 244 376
Apparatus-attr-of 66 56 24
Brand-of 326 83 91
Core-of 177 23 89
Next-operation 1311 233 391

Table 18: MSPT relation counts in our setup.
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E Detailed Experimental Results

This appendix provides further details on our ex-
perimental results. Table 26 depicts the results for
identifying sentences containing MEASUREMENT

or QUAL_MEAS annotations.
NER. Table 19 and Table 20 report F1 for NER

on MuLMS per label. Table 21 gives per-label
scores for NER in our MTL experiments. Table 22
and Table 23 provide per-label scores for the SOFC-
Exp corpus and MSPT corpus in a single-task set-
ting as well as in a multi-task setting with MuLMS
added to the training.

Relation extraction. Table 27 lists per-relation
scores when using gold NEs or when using pre-
dicted NEs for relation extraction, as well as per-
relation scores for the majority baseline. Table 25
shows relation extraction scores per label for both
dev and test. Table 24 shows overall results for
predicted entities on dev and test.

Label P R F1

MAT 83.6 82.2 82.8
±1.3 ±1.2 ±0.8

NUM 94.9 94.8 94.9
±0.6 ±1.0 ±0.7

VALUE 89.4 87.0 88.2
±0.6 ±1.2 ±0.9

UNIT 94.2 90.4 92.3
±0.4 ±1.1 ±0.6

PROPERTY 49.8 53.0 51.1
±3.0 ±4.5 ±1.4

CITE 88.6 87.7 88.2
±0.8 ±2.0 ±1.3

TECHNIQUE 49.6 51.1 50.1
±3.4 ±5.6 ±2.9

RANGE 70.3 74.8 72.3
±5.8 ±3.5 ±3.0

INSTRUMENT 46.7 44.8 45.6
±2.7 ±3.5 ±2.0

SAMPLE 72.5 36.7 47.9
±10.2 ±6.2 ±4.1

FORM 66.5 71.4 68.9
±3.0 ±1.9 ±2.5

DEVICE 82.6 74.9 78.6
±2.0 ±2.5 ±1.9

MEASUREMENT 61.6 55.3 58.2
±2.1 ±3.0 ±0.8

Table 19: Per label scores for NER using BILOU tag-
ging and MatSciBERT.

Label CRF-Tagger Dep. Parser

MAT 82.8±0.8 80.0±0.4

NUM 94.9±0.7 94.2±0.4

VALUE 88.2±0.9 82.7±1.1

UNIT 92.3±0.6 90.8±0.7

PROPERTY 51.1±1.4 51.7±2.0

CITE 88.2±1.3 85.7±1.5

TECHNIQUE 50.1±2.9 51.4±2.4

RANGE 72.3±3.0 66.4±4.0

INSTRUMENT 45.6±2.0 44.1±3.3

SAMPLE 47.9±4.1 29.4±18.1

FORM 68.9±2.5 67.6±1.1

DEVICE 78.6±1.9 76.4±2.2

MEASUREMENT 58.2±0.8 58.7±0.7

Table 20: Per-Label NER results on test in terms of F1
(using MatSciBERT).

Label Single-Task + SOFC + MSPT

MAT 82.8 82.3 82.3
NUM 94.9 95.6 95.6
VALUE 88.2 88.1 88.2
UNIT 92.3 92.1 92.6
PROPERTY 51.1 49.4 50.8
CITE 88.2 88.1 87.8
TECHNIQUE 50.1 52.9 50.0
RANGE 72.3 76.2 75.2
INSTRUMENT 45.6 45.9 42.8
SAMPLE 47.9 38.3 45.8
FORM 68.9 69.9 64.9
DEVICE 78.6 77.9 76.3
MEASUREMENT 58.2 57.8 56.9

Table 21: Per-Label NER results for MuLMS on test in
terms of F1 for single-task and multi-task MatSciBERT
taggers.

Label Single-Task + MuLMS

MATERIAL 75.8 73.2
EXPERIMENT 81.7 81.2
VALUE 93.9 92.0
DEVICE 72.6 72.0

Table 22: Per-Label Named Entity Recognition re-
sults for SOFC-Exp on test in terms of F1 using single-
task and multi-task MatSciBERT taggers.
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Label ST + MuLMS

META 47.5 46.3
PROPERTY-MISC 32.8 34.7
SYNTHESIS-APPARATUS 68.7 66.7
OPERATION 85.0 84.9
PROPERTY-UNIT 42.3 44.5
AMOUNT-MISC 41.4 26.0
NUMBER 94.8 95.5
AMOUNT-UNIT 95.5 95.0
REFERENCE 70.9 67.7
PROPERTY-TYPE 24.6 19.0
MATERIAL 84.1 81.6
MATERIAL-DESCRIPTOR 67.8 63.7
CHARACTERIZATION-APPARATUS 16.2 28.8
APPARATUS-UNIT 57.8 61.5
APPARATUS-DESCRIPTOR 67.0 65.1
APPARATUS-PROPERTY-TYPE 0.0 0.0
CONDITION-MISC 72.3 73.5
CONDITION-UNIT 95.2 94.3
NONRECIPE-MATERIAL 62.3 59.6
CONDITION-TYPE 15.7 12.8
BRAND 71.1 64.0

Table 23: Per-Label Named Entity Recognition re-
sults for MSPT on test in terms of F1 using single-task
(ST) and multi-task MatSciBERT taggers.

micro F1 macro F1

dev 42.5±1.0 37.9±1.7

test 36.5±0.9 32.8±1.2

Table 24: Relation extraction results in terms of F1,
predicted named entities (including standard deviation
over five folds).

Label dev test

hasForm 71.3±0.8 76.1±0.5

measuresProperty 88.0±1.0 83.1±0.8

measuresPropertyValue 84.1±2.2 73.8±1.0

usedAs 50.2±2.3 41.8±1.9

conditionProperty 83.0±1.3 72.3±1.0

conditionPropertyValue 74.7±2.5 63.2±2.5

conditionSampleFeatures 67.6±0.9 66.0±2.1

usesTechnique 94.6±0.6 91.0±0.9

conditionEnvironment 57.1±6.2 39.0±3.0

propertyValue 86.7±1.3 82.5±2.1

usedIn 49.3±5.6 37.9±3.7

conditionInstrument 98.2±0.8 92.2±0.9

dopedBy 00.0±0.0 22.7±18.7

takenFrom 85.5±3.7 84.7±3.6

usedTogether 07.5±2.0 04.0±1.7

Macro-avg. 66.5±1.1 62.0±1.0

Micro-avg. 73.2±1.0 67.6±1.0

Table 25: Per-label F1 scores for relation extraction
using MatSciBERT (gold named entities).
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dev test
LM Label P R F1 P R F1

BERT
MEASUREMENT

QUAL_MEAS
2-Class Macro Avg.

71.5±1.9

45.6±2.8

58.5±2.0

67.1±3.0

61.4±3.7

64.3±2.8

69.2±1.3

52.2±2.1

60.7±1.3

74.1±3.1

49.9±3.1

62.0±3.0

71.4±5.6

51.6±3.2

61.5±3.7

72.5±2.1

50.6±0.7

61.5±1.2

SciBERT
MEASUREMENT

QUAL_MEAS
2-Class Macro Avg.

69.1±1.9

54.0±1.7

61.5±1.2

77.6±1.5

66.3±5.0

72.0±2.8

73.1±0.4

59.4±1.9

66.2±1.0

71.1±2.0

52.7±0.5

61.9±0.9

79.5±1.6

52.8±3.2

66.2±1.8

75.0±0.7

52.7±1.4

63.9±0.6

MatSciBERT
MEASUREMENT

QUAL_MEAS
2-Class Macro Avg.

69.4±2.6

51.4±1.4

60.4±1.9

77.9±4.0

67.0±1.6

72.4±2.0

73.2±0.7

58.2±1.1

65.7±0.4

70.6±2.2

52.8±0.8

61.7±1.0

80.1±3.5

56.9±2.6

68.5±2.4

74.9±0.6

54.7±1.0

64.8±0.7

human MEASUREMENT 74.2 74.2
agreement QUAL_MEAS 61.7 61.7

Table 26: Ternary sentence classification results for identifying sentences containing MEASUREMENT or
QUAL_MEAS annotations vs. NONE. Human agreement is only suitable for a rough comparison because it
is estimated on a subset of the data.

Gold Entities Predicted Entities Majority Baseline
Label P R F1 P R F1 P R F1

hasForm 74.0 78.5 76.1 54.2 55.5 54.8 0.0 0.0 0.0
±1.8 ±1.1 ±0.5 ±3.6 ±1.6 ±2.3

measuresProperty 80.2 86.3 83.1 39.3 36.6 37.8 50.5 99.6 67.0
±1.1 ±2.2 ±0.8 ±2.8 ±2.2 ±1.4

measuresPropertyValue 68.6 80.0 73.8 41.5 38.3 39.7 0.0 0.0 0.0
±1.9 ±1.5 ±1.0 ±4.1 ±4.8 ±3.6

usedAs 49.2 36.5 41.8 30.1 19.1 23.2 0.0 0.0 0.0
±2.8 ±2.2 ±1.9 ±4.6 ±3.0 ±3.4

conditionProperty 65.3 81.2 72.3 29.0 27.4 27.9 0.0 0.0 0.0
±2.1 ±2.5 ±1.0 ±3.6 ±2.6 ±1.8

conditionPropertyValue 51.3 82.4 63.2 26.7 42.5 32.7 27.2 100.0 42.7
±3.0 ±3.3 ±2.5 ±2.8 ±2.7 ±2.4

conditionSampleFeatures 60.7 72.3 66.0 34.4 28.4 31.0 70.4 42.8 53.2
±2.8 ±1.3 ±2.1 ±4.6 ±3.1 ±3.3

usesTechnique 87.1 95.2 91.0 44.7 37.9 41.0 81.8 100.0 90.0
±1.1 ±1.3 ±0.9 ±1.6 ±2.7 ±1.8

conditionEnvironment 40.4 37.9 39.0 32.2 27.0 29.2 0.0 0.0 0.0
±2.6 ±4.1 ±3.0 ±4.1 ±3.8 ±3.1

propertyValue 78.7 86.8 82.5 40.9 46.7 43.4 0.0 0.0 0.0
±3.1 ±2.7 ±2.1 ±2.6 ±5.1 ±2.0

usedIn 42.5 35.6 37.9 18.6 14.2 15.9 0.0 0.0 0.0
±4.9 ±7.6 ±3.7 ±7.1 ±3.6 ±4.8

conditionInstrument 93.4 91.1 92.2 38.6 36.6 37.5 90.4 100.0 94.9
±0.1 ±1.6 ±0.9 ±1.9 ±3.7 ±2.5

dopedBy 26.7 20.0 22.7 20.0 6.7 10.0 0.0 0.0 0.0
±22.6 ±16.3 ±18.7 ±40.0 ±13.3 ±20.0

takenFrom 75.3 96.9 84.7 67.8 61.5 64.0 46.4 100.0 63.4
±5.1 ±3.8 ±3.6 ±7.8 ±6.9 ±4.6

usedTogether 9.6 2.5 4.0 9.6 2.4 3.8 0.0 0.0 0.0
±3.5 ±1.1 ±1.7 ±4.0 ±1.1 ±1.7

Macro-avg. 60.2 65.5 62.0 35.2 32.0 32.8 24.4 36.1 27.4
±0.8 ±1.6 ±1.0 ±2.7 ±1.6 ±1.2

Micro-avg. 66.8 68.4 67.6 38.6 34.7 36.5 50.5 29.5 37.2
±1.7 ±0.4 ±1.0 ±2.3 ±1.3 ±0.9

Table 27: Per-label scores (MuLMS test set) for relation extraction using MatSciBERT. Majority baseline is
computed on gold entities.
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MuLMS only MuLMS + SOFC-Exp MuLMS + MSPT
Label P R F1 P R F1 P R F1

hasForm 74.0 78.5 76.1 78.0 78.8 78.3 74.2 79.6 76.8
±1.8 ±1.1 ±0.5 ±2.9 ±1.8 ±0.9 ±0.7 ±1.3 ±0.9

measuresProperty 80.2 86.3 83.1 79.0 87.1 82.8 78.8 86.6 82.5
±1.1 ±2.2 ±0.8 ±1.1 ±0.9 ±0.4 ±1.2 ±1.3 ±0.3

measuresPropertyValue 68.6 80.0 73.8 68.9 82.7 75.1 70.3 82.1 75.7
±1.9 ±1.5 ±1.0 ±3.5 ±2.2 ±2.0 ±0.7 ±3.1 ±1.5

usedAs 49.2 36.5 41.8 47.9 35.7 40.8 51.9 37.5 43.5
±2.8 ±2.2 ±1.9 ±2.6 ±2.0 ±1.3 ±1.3 ±1.8 ±1.4

conditionProperty 65.3 81.2 72.3 67.4 82.1 73.9 66.1 80.3 72.5
±2.1 ±2.5 ±1.0 ±2.5 ±2.5 ±0.8 ±1.9 ±2.2 ±1.6

conditionPropertyValue 51.3 82.4 63.2 53.7 77.8 63.3 51.1 78.5 61.8
±3.0 ±3.3 ±2.5 ±4.2 ±4.3 ±2.0 ±2.6 ±3.1 ±2.1

conditionSampleFeatures 60.7 72.3 66.0 61.1 71.4 65.7 62.8 72.2 67.1
±2.8 ±1.3 ±2.1 ±3.7 ±3.8 ±1.4 ±3.4 ±2.5 ±2.6

usesTechnique 87.1 95.2 91.0 85.6 97.1 91.0 87.2 95.7 91.2
±1.1 ±1.3 ±0.9 ±0.8 ±1.0 ±0.3 ±1.1 ±0.8 ±0.6

conditionEnvironment 40.4 37.9 39.0 46.3 46.2 46.0 47.2 49.8 48.3
±2.6 ±4.1 ±3.0 ±3.5 ±4.6 ±2.7 ±6.3 ±4.7 ±5.2

propertyValue 78.7 86.8 82.5 76.2 85.5 80.5 81.4 88.7 84.8
±3.1 ±2.7 ±2.1 ±2.7 ±1.7 ±1.2 ±1.7 ±1.7 ±1.1

usedIn 42.5 35.6 37.9 45.5 47.6 45.9 41.8 40.4 40.5
±4.9 ±7.6 ±3.7 ±7.0 ±5.7 ±3.7 ±4.9 ±5.5 ±1.4

conditionInstrument 93.4 91.1 92.2 93.6 93.2 93.4 93.5 91.9 92.7
±0.1 ±1.6 ±0.9 ±0.1 ±0.9 ±0.5 ±0.1 ±1.6 ±0.9

dopedBy 26.7 20.0 22.7 0.0 0.0 0.0 28.3 26.7 27.0
±22.6 ±16.3 ±18.7 ±0.0 ±0.0 ±0.0 ±16.3 ±13.3 ±14.0

takenFrom 75.3 96.9 84.7 61.7 98.5 75.6 77.0 98.5 86.2
±5.1 ±3.8 ±3.6 ±7.5 ±3.1 ±5.7 ±8.6 ±3.1 ±6.2

usedTogether 9.6 2.5 4.0 8.8 2.2 3.5 12.0 3.6 5.4
±3.5 ±1.1 ±1.7 ±3.3 ±0.8 ±1.2 ±7.2 ±3.4 ±4.8

Macro-avg. 60.2 65.5 62.0 58.2 65.7 61.1 61.6 67.5 63.7
±0.8 ±1.6 ±1.0 ±1.5 ±1.1 ±0.7 ±0.9 ±1.0 ±0.7

Micro-avg. 66.8 68.4 67.6 67.4 68.9 68.1 68.0 69.5 68.7
±1.7 ±0.4 ±1.0 ±1.9 ±1.2 ±0.7 ±1.1 ±0.5 ±0.7

Table 28: Per-label scores (MuLMS test set, gold entities) for multi-task relation extraction.
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Abstract
We introduce a comprehensive end-to-end
pipeline designed to extract complete bibliog-
raphy section from English scientific articles
in digital-born PDF format and further split
them into individual citations. At the heart of
our pipeline lies the utilization of Language-
independent Layout Transformer (LiLT), a mul-
timodal model that combines text and layout
features to enhance the accuracy and robustness
of bibliography extraction. By considering both
text and visual structure, LiLT significantly im-
proves the identification of bibliographic sec-
tions within scientific articles. To split the ex-
tracted full bibliography into individual cita-
tions, we employ a custom fine-tuned version
of SciBERT, a Transformer-based model that
excels at handling complex formatting varia-
tions common in scholarly bibliography.

Having such end-to-end pipeline in-house al-
lows us to bypass reliance on third-party black
box tools, such as GROBID, offering greater
control and transparency in the bibliography
extraction process. Another highlight of our
pipeline is its extensibility, as it can be seam-
lessly adapted to multilingual and image-based
PDFs, hence allowing its utility across a wide
range of scholarly content. When evaluated on
an in-house dataset of digital-born English PDF
articles published at Elsevier, we achieved an
F1-score of 94.6%, a notable 3.1% improve-
ment over GROBID, which is a well-regarded
tool for bibliography parsing in the industry.

1 Introduction

Scientific articles are an essential part of the sci-
entific community. In the digital age, where mil-
lions of scientific articles are published every year,
efficient extraction of header (title, author names,
affiliations, abstract) and bibliography entities from
unstructured data, can facilitate not only the search-
ability and discoverability of scientific work, which
is beneficial for the researchers, but it also plays a
role in the automation of academic workflows.

Although most scientific articles received by sci-
entific publishers come in semi-structured format
(MS Word), a significant proportion of scholarly
articles still reside in PDF-based documents. The
diverse formatting, layouts, and font styles found
in PDF articles demand sophisticated techniques to
accurately extract bibliographic information, such
as citation details, from these unstructured docu-
ments.

By facilitating precise referencing and citation
tracking, bibliography extraction aids in the credi-
bility and impact assessment of published research,
a critical aspect for publishing companies as they
endeavor to maintain the integrity and relevance of
the scientific literature they curate. Mature tools
such as GROBID (GRO, 2008–2023), Cermine
(Tkaczyk et al., 2015) and Neural ParsCit (Prasad
et al., 2018a), provide various APIs for header and
bibliography entities extraction with good results
(Romary and Lopez, 2015; Lo et al., 2020). How-
ever, these tools face limitations in coping with
scanned documents or multilingual content. Ad-
dressing these challenges requires a more tailored
and fine-tuned solution.

Most traditional approaches to information ex-
traction from PDF documents have primarily relied
on text-based methods as evidenced in (Cioffi and
Peroni, 2022; Matsuoka et al., 2016; Prasad et al.,
2018b). Document layout analysis with Convo-
lutional Neural Networks (CNNs), visual infor-
mation extraction with Graph Neural Networks
(GNNs) and the emergence of Transformer archi-
tecture, have shifted the necessity of many anno-
tated data and improved the accuracy of document
layout analysis tasks (Zhong et al., 2019; Qasim
et al., 2019). However, with the advent of Doc-
ument AI, there has been a notable shift towards
multimodal approaches that seamlessly integrate
both textual and layout features (Cui et al., 2021).
One prominent example of such a multimodal ap-
proach is LayoutLM, along with its subsequent
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versions, LayoutLMv2 and LayoutLMv3. These
models represent pre-trained Document Founda-
tion Models that effectively merge Natural Lan-
guage Processing (NLP) and Computer Vision
(CV) technologies and substantially outperform
several text-based SOTA pre-trained models such
as BERT and RoBERTa (Xu et al., 2020, 2022;
Huang et al., 2022). Li et al also showed that the
LayoutLM model shows better detection accuracy
on the DocBank, a benchmark dataset for docu-
ment layout analysis when compared with other
transformer-based or R-CNN models (Li et al.,
2020). However, the license of the LayoutLMv3
prohibits it from being used in industry. A good
alternative for industrial use cases instead, is the
Language-independent Layout Transformer (LiLT),
a multimodal model, which overcomes the lan-
guage barrier and decouples and learns the layout
knowledge from the monolingual structured doc-
uments before generalizing it to the multilingual
(Wang et al., 2022).

Our approach focuses on employing a multi-
modal approach to navigate the complexities of
PDF articles and extract bibliographic data with
precision, without depending on external tools for
which we don’t have the ability to alter their behav-
ior, with the additional opportunity to expand to
multilingual content.

2 Grobid Pipeline

GeneRation Of Bibliographic Data (GROBID)
(GRO, 2008–2023) is a machine learning library
for extracting, parsing and re-structuring raw doc-
uments such as PDF into structured XML/TEI en-
coded documents with a particular focus on techni-
cal and scientific publications. GROBID provides
APIs for extraction of entities from both Head and
Tail (bibliography) sections of PDF manuscripts.
GROBID is popularly used for entity extraction
from scientific articles and serves as a strong base-
line for entity extraction from both header and bib-
liography. This tool has been around for more than
a decade and considered a standard tool in both
academia and industry (Lipinski et al., 2013).

3 In-house Bibliography Extraction
Pipeline

In this work, we developed an in-house pipeline
for extracting citations from PDF articles. This
pipeline takes PDF articles as input and gives a list
of citations as the final output. Figure 2 depicts the

details of this pipeline. This pipeline is composed
of the following main components:

3.1 PDF Parser

This component enables the extraction of text and
layout information from the input PDFs. As shown
in Figure 2, we also have a rule-based candidate
selection logic, which helps us to select a few
candidate pages containing bibliography. We ex-
perimented with various tools for parsing the se-
lected PDF pages, two of which seemed particu-
larly promising:

• PyMuPDF1 is a Python-based PDF parser,
which is actively maintained and enhanced
with over 30 million downloads. This ease
of use makes this tool quite popular across
several entity extraction applications.

• PDFlib TET (Text and Image Extraction
Toolkit)2 is a library written in C/C++. It pro-
vides bindings for various programming lan-
guages, including Python. Also, it provides a
binary executable, which can be invoked from
various computational environments.

3.2 Bibliography Detector

The next module in our pipeline is the bibliography
detection model, which takes the text and layout
extracted by the PDF parser as input and performs
token classification for each token, classifying
them as either bibliography or non-bibliography.
As the multimodal token classification model, we
use the Language-independent Layout Transformer
(LiLT).

LiLT (Wang et al., 2022) is a multimodal model
which takes both text and bounding boxes as input.
The entire framework represents a parallel dual-
stream Transformer that concurrently processes
two streams of information: one for text and the
other for layout.

LiLT can be pre-trained on the structured docu-
ments of a single language and then directly fine-
tuned on other languages with the corresponding
off-the-shelf monolingual/multilingual pre-trained
textual models. This transfer learning enables
multimodal document understanding for many lan-
guages, potentially very useful in the context of ap-
plications that require multilingual capability. The
LiLT architecture is shown in Figure 3.

1https://pymupdf.readthedocs.io
2https://www.pdflib.com/products/tet/
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Figure 1: Grobid bibliography extraction pipeline

Figure 2: In-house bibliography extraction pipeline

3.3 Citation Splitter
The last component of this pipeline is a cita-
tion splitting model, designed to divide the full
bibliography into separate citations. While this
might seem a straightforward task, it presents a
formidable challenge for machine learning algo-
rithms due to the considerable diversity in citation
formats.

In this work we fine-tune SciBERT (Beltagy
et al., 2019), a BERT-like, transformer-based model
trained on scientific content. We trained this cus-
tomized SciBERT model as a token classifier, em-
ploying an in-house dataset of bibliographies for
supervised learning. This approach enabled the
model to learn to accurately detect the starting point
of each citation within the bibliography. As new
citations consistently commence after a newline
in scientific articles, we made an additional effort
to simplify the task for the model by retaining the
newline information within the complete bibliogra-
phy text as an extra clue for the model.

4 Experiments

4.1 Datasets
For training the bibliography detection model, we
conducted experiments using two publicly avail-
able datasets: DocBank (Li et al., 2020) and GRO-
TOAP2 (Tkaczyk et al., 2014). Our preliminary
analysis and experimentation demonstrated the su-
periority of GROTOAP2 dataset over DocBank

dataset in terms of its annotation quality.
To train the citation splitter model, we used an

in-house dataset of bibliographies, by annotating
the starting point of each citation within the bibli-
ography.

For the final evaluation, we used scientific PDF
articles in English from Elsevier’s internal scien-
tific articles database published after 2020. All
experimental results reported in this article were
conducted on this in-house dataset.

4.2 Compared Methods
We compare the following approaches:

• GROBID-CRF: GROBID with CRF-based
models.

• GROBID-DL: GROBID with Deep Learning
based models. As recommended in the docu-
mentation, we use BiLSTM-CRF model.

• In-house pipelines: A proposed stack of in-
house models, with PyMuPDF and PDFlib
as PDF parsing tools, LiLT as a bibliography
detection model and a SciBERT-based citation
splitter model.

4.3 Experimental Results
Table 1 shows the final results obtained in our ex-
periments. We evaluated the extraction of the full
bibliography section and the extraction of each ci-
tation in the bibliography.
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Figure 3: Language-Independent Layout Transformer (LiLT)

Pipeline PDF Parsing Tool Bibliography Citations
Accuracy Precision Recall F1

GROBID-CRF pdfalto 50.2 90.8 89.8 90.3
GROBID-DL pdfalto 50.9 92.2 90.8 91.5
In-house PyMuPDF 66.7 92.4 93.2 92.8
In-house PDFlib 72.8 94.9 94.3 94.6

Table 1: Comparison of different methods for extracting bibliography and citations

Full bibliography detection is evaluated in terms
of accuracy, calculated as the ratio of the num-
ber of correctly detected bibliographies to the to-
tal number of bibliographies present in the evalua-
tion dataset (GRO, 2008–2023; Ohta et al., 2014).
The correctness of the bibliography is measured in
terms of a relaxed edit distance (Levenshtein), keep-
ing a tolerance of up to 10 consecutive mistakes
and 10% total mistakes in terms of normalized edit
distance). Evaluation at the citation-level is per-
formed in terms of precision, recall and F1-score
(GRO, 2008–2023). The metrics are defined as
follows:

• Precision: Ratio of the number of correctly
extracted citations to the total number of cita-
tions extracted by the system.

• Recall: Ratio of the number of correctly ex-
tracted citations to the number of all citations
in the ground truth.

• F1 Score: 2* Precision * Recall / (Precision +
Recall)

In the experimental results, we observed that
GROBID is a strong baseline for this task. It is a

very robust tool for performing entity extraction
from PDF articles, especially the bibliography. Out
of the two variants of GROBID, Grobid-DL was
found superior. The proposed in-house pipeline
with PDFlib PDF parser, LiLT based bibliography
detection model and SciBERT based citation split-
ter is the best performing pipeline, outperforming
Grobid baseline by a large margin of 3.1%. Among
the two PDF parsing tools, PDFlib resulted in su-
perior performance especially in terms of reading
order detection and extraction of line and paragraph
level information, which further allowed us to cor-
rect some of the prediction mistakes made at the
token level.

5 Conclusion and Future Work

We have presented an end-to-end pipeline for the
extraction of bibliographic information from sci-
entific articles in digital-born PDF format. Our
pipeline is designed to address the challenges posed
by the diverse formatting, layouts, and font styles
found in PDF articles. We have leveraged cutting-
edge techniques and models, including LiLT and
SciBERT, to achieve accurate and robust bibliogra-
phy extraction. We achieved a significant improve-
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ment in accuracy over existing tools like GROBID,
showcasing the potential of our approach in advanc-
ing the task of bibliography parsing.

We see several avenues for future research. One
potential direction would be to integrate genera-
tive AI based Large Language Models (LLM) into
the pipeline. The versatility of LLMs would in-
crease the adaptability of our pipeline to a wider
range of scholarly content, encompassing diverse
research domains, languages, and publication for-
mats. Alternatively, our LiLT-based pipeline could
be adapted to handle languages other than English
through transfer learning, which would be valuable
as scientific research is conducted globally.
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Abstract

Hallucination plagues even frontier LLMs—
but how bad is it really for summarizing aca-
demic papers? We evaluate Factored Verifica-
tion, a simple automated method for detecting
hallucinations in abstractive summaries. This
method sets a new SotA on hallucination de-
tection in the summarization task of the HaluE-
val benchmark, achieving 76.2% accuracy. We
then use this method to estimate how often lan-
guage models hallucinate when summarizing
across multiple academic papers and find 0.62
hallucinations in the average ChatGPT (16k)
summary, 0.84 for GPT-4, and 1.55 for Claude
2. We ask models to self-correct using factored
critiques and find that this lowers the number
of hallucinations to 0.49 for ChatGPT, 0.46 for
GPT-4, and 0.95 for Claude 2. The halluci-
nations we find are often subtle, so we advise
caution when using models to synthesize aca-
demic papers.

1 Introduction

Hallucination—the generation of inaccurate or un-
grounded information—is a largely unsolved prob-
lem for LLMs (Kryściński et al., 2019; Maynez
et al., 2020; Ji et al., 2023). This is acceptable
for creative use cases such as story generation and
brainstorming, but would be highly problematic if
common for academic summarization and Q&A
where factual accuracy is key. How common is
hallucination for SotA models when answering
questions given the abstracts of multiple scientific
papers?

To answer this question, we first construct a sim-
ple method for checking hallucination inspired by
Kadavath et al. (2022) and Lightman et al. (2023):
Given a summary, we automatically decompose it
into key claims, assign a model-generated prob-
ability to each of the claims given the relevant
sources, and combine these into an overall correct-
ness probability. We validate this method on the
hallucination detection benchmark HaluEval and

Figure 1: Factored Verification splits a summary into
claims, checks each claim, and then optionally revises
the summary to address the claim critiques. Each step
is a language model task.

set a new SotA, exceeding the previous chain-of-
thought-based method by 10 absolute percentage
points using the same language model.

We then apply Factored Verification to detecting
hallucination in a real-world scientific summariza-
tion task. Given the abstracts of eight papers and a
question, the task is to provide a question-relevant
summary. We measure hallucination for SotA mod-
els including GPT-4 (OpenAI, 2023) and Claude
2 (Bai et al., 2022a), and estimate that the average
summary has between 0.62 and 1.57 hallucinations.

Given that we can automatically detect some hal-
lucinations, can we use this knowledge to reduce
them? We treat the claim-wise critiques generated
by Factored Verification as model-generated advice
(Saunders et al., 2022a) and show that we can re-
duce detected hallucinations for every model we
study, but that significant hallucination remains.
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2 Detecting hallucination with Factored
Verification

We first develop and validate Factored Verifica-
tion, a simple method for using LLMs to detect
hallucinations in settings where the relevant source
material is provided.

2.1 Defining “hallucination”
We call a claim “hallucinated” if it is not backed
by the source material provided in context, even
if it could be supported with other sources. For
example, if the source material discusses the im-
plementation of a public transport policy and the
model-generated summary infers that the policy
was aimed at addressing sustainability challenges,
this is a hallucination unless the source explicitly
talked about this as the goal of the policy.

2.2 Method
Following Lightman et al. (2023), we break each
summary into a list of claims and then assign each
claim a probability of being correct, both using
LLM prompting. The claim decomposition prompt
is in Appendix A.1.1.

To compute the likelihood that a single claim is
correct we use a few-shot prompt with GPT-4 base
(OpenAI, 2023) and look up the probability of the
final Yes token (Appendix A.1.2). For ChatGPT,
which doesn’t provide access to token probabilities,
we ask the model to verify that each claim is sup-
ported using few-shot chain-of-thought (Jason Wei
et al.), interpreting the resulting Yes/No answer as
a 0/1 probability (Appendix A.1.3).

Assuming independence of the correctness of
claims for simplicity, the probability that the sum-
mary is correct is the product of the probabilities
of each of the individual claims:

Psummary =
n∏

i=1

Pclaimi
(1)

We classify a summary as hallucinated if
Psummary is greater than a threshold θ.

2.3 Dataset
To measure how well Factored Verification works,
we use the summarization task of HaluEval, a hallu-
cination benchmark (Li et al., 2023). Each item in
this task consists of a document and two summaries,
one of which contains a subtle hallucination.

Due to cost constraints, we randomly sample
5% of the dataset as a “training” set, and 20% as

a test set (1000 and 4000 items respectively). The
training set is only used to set the decision thresh-
old θ by running GPT-4 with the aforementioned
claim likelihood prompt on the training set exam-
ples and calculating the average of Psummary for
both faithful and hallucinated summaries.

2.4 Results

Factored Verification is SotA for hallucination de-
tection, exceeding prior few-shot and chain-of-
thought approaches for both ChatGPT and GPT-4
(Table 1).

Model Few-shot CoT Factored

GPT-4 30.9% 75.5% 76.2%
ChatGPT (3.5) 58.5%* 61.2%* 71.2%

Table 1: HaluEval summarization results, showing %
accuracy, n = 4000, * from Li et al. (2023).

For comparison, we also tested a single-prompt
equivalent of Factored Verification, asking Chat-
GPT to write out each claim and verify it in one
go. This achieved an accuracy of 63.3%, which is
below the multi-prompt factored method (71.2%)
and comparable to standard CoT results (61.2%).

We were surprised by GPT-4’s low 30.9% accu-
racy when using the exact few-shot prompt from
Li et al. (2023). To check our implementation, we
ran the same code with ChatGPT and found an ac-
curacy 59.9% on our sample, roughly matching the
58.5% from Li et al. (2023). Given that GPT-4 is
much more competitive in the CoT and Factored
Verification settings, we suspect that the Li et al.
(2023) few-shot prompt has idiosyncratic limita-
tions.

3 How often do models hallucinate in
scientific summaries?

We now turn to our task of interest, generating sum-
maries based on the abstracts of scientific papers.
We will apply Factored Verification to estimate how
frequently models hallucinate in this context.

3.1 Task

Given a question and eight abstracts, the task is to
generate a question-relevant summary where each
claim is cited with the paper that backs it up. Figure
2 shows a simplified example with only two papers.
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Query: What is the impact of creatine on cognition?

Summary: The papers suggest that creatine supplemen-

tation may have a positive impact on cognition. Ling

(2009) found that creatine ethyl ester supplementation

improved performance on several cognitive tasks, al-

though the results require replication using objective

measures of compliance. Benton (2010) found that crea-

tine supplementation improved memory in vegetarians,

but not in those who consume meat.

Figure 2: Example of the scientific summarization task,
simplified from eight to two papers.

The dataset of queries and abstracts1 is generated
by using 200 anonymized search queries and their
associated top results from Elicit (Stuhlmüller and
Byun, 2023).

3.2 Method

We follow the hallucination detection strategy out-
lined in Section 2.2, with the following modifica-
tions to reduce compute cost:

1. We directly treat sentences as claims.

2. We only check claims that have associated
citations.

3. When checking each claim, we provide only
the abstracts of the cited papers as sources.

We expect that these modifications lead to little
degradation given that almost all sentences have
citations and the simplification step from sentence
to claim is not doing much work.

3.3 Results

We run Factored Verification with ChatGPT, GPT-
4, Claude 2, and Claude Instant (OpenAI, 2023; Bai
et al., 2022a). Table 2 shows that for all models,
our method reports at least one hallucination in the
majority of summaries.

We include additional results that show interac-
tions between ChatGPT and GPT-4 when used as
generation, criticism, and judge models in Table 3
in the Appendix.

3.4 Interpretation

Based on the 76% accuracy of Factored Verification
on HaluEval, we know that there are likely false

1https://github.com/elicit/
fave-dataset

positives and/or false negatives, so we can’t take
the reported hallucination rates literally.

We manually inspected about a hundred claims
evaluated by GPT-4. When GPT-4 said that a claim
is supported, we agreed in all cases. When GPT-
4 reported an unsupported claim, we agreed 66%
of the time. So, our best guess for the true hallu-
cination rate is 2/3 of the reported hallucination
rate.

Many of the claims we encountered were wrong
in subtle ways that we would likely have missed
without seeing the GPT-4 critiques, and would ex-
pect non-expert evaluators to miss, including:

• Stating that a claim is supported by two ab-
stracts when it is only supported by one

• Slightly exaggerating the findings of a paper

• Conflating the purpose of the study with the
outcome

• Implying that two independent findings are
linked

This augmentation of human evaluation is con-
sistent with prior work by Saunders et al. (2022b)
which found that model-generated critiques help
humans find flaws in summaries.

4 Reducing hallucination in scientific
summaries with Factored Verification

It is common for LLMs to apparently fail at a task,
only to then succeed with better prompting. Can
we prompt models using the detected inaccuracies
to automatically reduce hallucination in scientific
summaries?

4.1 Baseline
We ask GPT-4 to self-correct by first identifying
false claims in its initial summary, then revising
the summary given this correction (prompts in Ap-
pendix A.4.1 and A.5). This increased the average
number of detected hallucinations from 1.55 to
2.13. Huang et al. (2023a) similarly found that the
GPT-4 generation of LLMs struggles to directly
self-correct across a variety of reasoning datasets.

4.2 Method
To improve on the baseline, we propose to reduce
hallucination with Factored Verification in three
steps, as illustrated in Figure 1 and shown in Algo-
rithm 1.
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Model Hallucinations per
summary (reported)

Hallucinations per
summary (adjusted)

% of summaries with
reported hallucinations

GPT-4 1.26 → 0.69 0.84 → 0.46 63.25% → 40%
ChatGPT (3.5, 16k) 0.93 → 0.735 0.62 → 0.49 54% → 41.63%
Claude 2 2.32 → 1.43 1.55 → 0.95 83.0% → 71.50%
Claude instant 2.35 → 1.86 1.57 → 1.24 87.0% → 81.50%

Table 2: Prevalence of hallucination for models when generating summaries of academic papers, before and after
revision with factored critiques. Based on manual inspection of approximately 100 data points our best guess is that
the true prevalence of hallucination (“adjusted”) is 2/3 of the reports from automated evaluation.

First, we create claim-wise critiques (true/false
judgments and supporting reasoning) analogous to
the hallucination detection method above: We ask
the model to evaluate the supportedness of each
sentence based on the cited abstracts. We then
concatenate the critiques of the unsupported claims
to form the factored critique. Finally we ask the
model to revise the summary given that critique.

Algorithm 1 Factored Verification: Revising a sum-
mary by generating sentence-wise critiques

1: Initialize empty list for critiques
2: for each sentence in the summary do
3: Critique← LLM.critique(sentence, cited abstracts)
4: if sentence is unsupported then
5: Add Critique to the list of critiques
6: end if
7: end for
8: FactoredCritique← concat(critiques)
9: RevisedSummary← LLM.revise(FactoredCritique)

10: return RevisedSummary

Figure 3 shows an example critique.

4.3 Results

Table 2 shows that Factord Verification reduces
the number of summaries with reported halluci-
nation by 5.50% to 23.25% (absolute) depending
on the model, with ChatGPT being the lowest-
hallucination model before critique (0.62 estimated
hallucinations per summary), and GPT-4 being
the lowest-hallucination model after critique and
across all settings (0.46 estimated hallucinations
per summary).

5 Related work

Hallucination is widely known to be a significant
problem for LLMs (Luo et al., 2023; Peng et al.,
2023; Ji et al., 2023), although to a much lesser
extent for abstractive summarization where the in-
formation needed to answer is fully provided (Cao

et al., 2022; Huang et al., 2023c).
Various strategies have been proposed to mit-

igate hallucination. Some strategies aim to pre-
vent their occurrence by checking how familiar
models are with instructions (Luo et al., 2023).
Others, including our proposed method, focus on
the detection and correction of hallucinations post-
generation (Cao et al., 2022; Huang et al., 2023b).

Of these, notable strategies are the use of exter-
nal knowledge and retrieval augmentation, and au-
tomated feedback (Shuster et al., 2021; Peng et al.,
2023; Zhang et al., 2023). While external knowl-
edge is less relevant here, Factored Verification can
be viewed as a kind of automated feedback.

In simultaneous work, Dhuliawala et al. (2023)
propose an automated feedback method called
Chain-of-Verification, which is effectively the same
as ours: (i) Draft an initial response, (ii) plan fact-
checking questions, (iii) answer the questions in-
dependently, and (iv) generate a final revised re-
sponse. Their evaluation focuses on out-of-context
fact checking. Consistent with our results, they find
that the factored version of their approach reduces
hallucination for question-answering and text gen-
eration tasks.

6 Relevance to AI alignment

To align powerful AI systems, we need to be able
to provide accurate feedback and supervision even
when systems surpass human-level performance,
a property known as scalable oversight (Amodei
et al., 2016).

Today, reinforcement learning from human feed-
back (RLHF) is often used to align LLMs (Chris-
tiano et al., 2023; Bai et al., 2022b; Ouyang et al.,
2022). However, GPT-4 already surpasses the per-
formance of the average human on many academic
tasks (OpenAI, 2023), making it difficult for non-
experts to provide effective reward signals. In our
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Critique:
- For the sentence "Giuntella (2015) found that immigration reduced waiting times for outpatient referrals, suggesting that

policies affecting population dynamics can indirectly impact waiting times and thus healthcare costs." in the summary: The

claim accurately reflects the findings of Giuntella (2015) that immigration reduced waiting times for outpatient referrals.

However, the claim extends the findings of the study to suggest that policies affecting population dynamics can indirectly

impact waiting times and thus healthcare costs. While this may be a reasonable inference, it is not directly supported by

the abstract.

- For the sentence "Propper (2002) found that GP fundholders were able to secure shorter waiting times for their patients,

suggesting that giving family doctors the ability to choose the hospital where their patients are treated and the means to

pay for some services can reduce waiting times." in the summary: The claim is not directly supported by the abstract.

The abstract states that the study investigates whether GP fundholders were able to secure shorter waiting times for their

patients, but it does not provide the results of this investigation. Therefore, the claim that Propper (2002) found that GP

fundholders were able to secure shorter waiting times for their patients is not supported by the abstract.

Figure 3: Example of a factored critique generated with GPT-4

attempts to delegate evaluation of academic claims
to non-expert contractors, we observed only 38%
inter-rater agreement for unsupported claims, a sign
of similar difficulties. In the short term this can
be solved by using contractors with specialized
domain knowledge. However, this won’t work if
models surpass the capabilities of the best humans.

We have shown that factored critiques let mod-
els correct some of their own mistakes without
need for human supervision. If similar approaches
can be extended beyond hallucination reduction to
richer tasks, they could help us scale supervision
in lockstep with future model capabilities.

7 Discussion

Our main finding is that the absolute rate of hallu-
cination of SotA models like ChatGPT, Claude 2,
and GPT-4 is surprisingly high for academic sum-
marization. This is true even with revision using
factored critiques, which results in 0.46 to to 1.24
estimated hallucinations per summary.

A natural question to ask in this context is
whether we can finetune on model-revised sum-
maries, incrementally bootstraping to more and
more accurate summaries, initially detecting and
eliminating the most egregious failure modes, then
more subtle ones with each training iteration.

Overall, despite incredible advances, language
models still struggle with accurate summarization
in academic contexts. Many mistakes are only clear
upon careful inspection of the sources and look
identical to genuine answers otherwise. For now,
we advise caution in situations where accuracy mat-
ters, as we would for human summaries as well.
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A Appendix

A.1 Factored Verification prompts (HaluEval)

A.1.1 Decomposing a summary into claims

Below is a summary of a document.

Please extract ALL the claims from the

document. You should give your answer

as a list separated by "-" and start by

saying "The claims are:"

[summary].

A.1.2 Verifying the correctness of a claim with
GPT-4 base

Below are a set of documents and claims.

We will check if the document that the

claim is supported by the document or

otherwise inaccurate. Below are some

examples. It can sometimes be the case

that a claim is very subtly wrong.

[Few-shot examples]

Example 5:

Document: [Document]

Claim: [Claim]

Supported: Yes

A.1.3 Verifying the correctness of a claim with
ChatGPT

Below is a claim and a document. Check

that the claim is supported by the

document. If it is, say "Yes". If

it is not, say "No".

Document: [document]

Claim: [claim]

Give your answer in the following

format:

Reasoning: [give your reasoning

(including quotes) here]

Supported: [Yes/No]

Remember you MUST include quotes in

your reasoning.
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A.2 Prompt template for generating
summaries of academic papers

I now need you to help me summarize many

more papers in the same way as above.

Our research question is "[question]".

I’ve collected many papers that might

address this research question.

Paper [number]: [reference]

Title: [title]

Abstract: [abstract]

Write a summary of what the papers

collectively say about the research

question. Use the same format as the

summary above.

You must cite the papers in your summary.

You can use the following format:

Author (year)

You will only include the findings that

directly answer our research question,

ignoring other findings that are only

loosely relevant. Remember to include

citations in the final summary. Your

final summary should use varied and

engaging language.

A.3 Prompt templates for Factored
Verification (academic papers)

A.3.1 Generating claim-wise critiques
I need some more help verifying some

claims from scientific papers.

The claim is from [paper references]:

[reference]:

Title: [title]

Abstract: [abstract]

==

Claim: [claim]

First give a critique of the claim.

Then, say whether it is supported by

the abstract["s" if we have multiple

abstracts]. Finally, if claim is not

supported give a revised claim that is

supported by the abstract["s" if we have

multiple abstracts].

If the claim is partially supported say

"No" for the "Supported" field and give

a revised claim that is fully supported

by the abstract.

Format:

Critique: [critique]

Supported: "Yes" or "No"

Revised Claim: [revised claim] or "N/A"

if claim is supported.

A.3.2 Revision based on claim-wise critiques
As a follow-up to the papers and model-provided
summary:

Ok, after reading your summary, I have

some feedback:

Feedback:

I have some concerns about the factual

accuracy of the summary:

- For the sentence "[original false

claim]" in the summary: [critique]

===

Can you correct your summary

incorporating each piece of my feedback?

The concerns are MOST important to

address. Start by writing "Corrected

summary:" and then your corrected

summary. Keep everything not mentioned

in my feedback the same.

A.4 Prompt templates for self-correction
baseline (academic papers)

A.4.1 Generating self-correction feedback
Below is a list of academic papers.

[Papers]

This is a summary of the papers:
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[summary]

Please read the papers and the summary

and give feedback. The feedback should

ONLY look the at factual accuracy of the

summary and make sure that any claims

made are FULLY supported by the relevant

papers. Write "Feedback:" and then your

feedback. You should give a VERY harsh

long and detailed piece of feedback.

A.5 Revision based on self-generated
feedback

Ok, after reading your summary, I have

some feedback:

Feedback:

[Model feedback from prompt above]

Can you correct your summary

incorporating each piece of my feedback?

The concerns are MOST important to

address. Start by writing "Corrected

summary:" and then your corrected

summary. Keep everything not mentioned

in my feedback the same.

A.6 Additional results
See Table 3.
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Summary
model

Critique
model

Judge Hallucinations per
summary (reported)

% of summaries with
reported hallucinations

ChatGPT - GPT-4 0.89 51.00%
ChatGPT ChatGPT GPT-4 0.98 52.00%
ChatGPT GPT-4 GPT-4 0.45 28.00%
GPT-4 - GPT-4 1.55 69.50%
GPT-4 ChatGPT GPT-4 1.19 67.00%
GPT-4 GPT-4 GPT-4 0.51 29.50%
GPT-4 - ChatGPT 0.84 48.00%
GPT-4 ChatGPT ChatGPT 0.37 23.50%
ChatGPT - ChatGPT 0.97 57.00%
ChatGPT GPT-4 ChatGPT 0.85 49.50%
ChatGPT ChatGPT ChatGPT 0.66 37.00%

Table 3: Interaction effects between ChatGPT and GPT-4 as summary, critique, and judge models. ChatGPT refers
to the GPT-3.5 series with 16k context. Dashes indicate that no revision was used. In the main paper, for ChatGPT
and GPT-4, we average over { ChatGPT, GPT-4 } as critique generation and evaluation models to reduce interaction
effects. For Claude models, we use ChatGPT as a judge.
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Abstract

Peer review is an evaluation process where ex-
perts in a particular field assess the quality and
credibility of a research paper or manuscript
prior to its publication. Utilizing Artificial In-
telligence (AI) in the peer review process has
the potential to enhance the review process by
providing more objective, efficient and accu-
rate evaluations. Summarizing the pros and
cons of peer reviews will be valuable for ed-
itors/area chairs to provide constructive feed-
back to authors, make informed decisions about
manuscript publication and identify potential
issues in the field. It will also assist them in un-
derstanding which areas of their work need im-
provement and which do not. In this research,
we propose a novel architecture that uses a su-
pervised method to generate generic pros and
cons summaries to assist editors and authors in
analyzing the feedback from peer reviews. Ad-
ditionally, we propose an unsupervised method
for generating aspect-based pros and cons sum-
maries. Our proposed method achieves an aver-
age Rouge-1 F1 Score of 31.61 in generating
generic pros and cons summaries and 32.62 in
generating aspect-based summaries.

1 Introduction

Peer review, a process in which experts in a spe-
cific field assess the quality of research work, is
a vital aspect of scientific discovery. It is well-
known that peer reviews are controversial due to
their quality, randomness, bias, and inconsistencies
(Bornmann and Daniel, 2010). Additionally, there
have been concerns about alleged reviewer bias in
"single-blind" peer reviews (Tomkins et al., 2017)
and arbitrariness between different reviewer groups
(Langford and Guzdial, 2015). Despite these crit-
icisms, within the scientific community, peer re-
view is considered as an essential component of
the academic writing process as it helps ensure that
the papers published in scientific journals are of
high quality and based on accurate experimenta-

tion. However, despite its significance, there is a
lack of analysis and evaluation of the content and
structure of reviews and their quality. According to
a study by Kovanis et al. (Kovanis et al., 2016), ap-
proximately 63.4 million hours were spent on peer
reviews in 2015 alone. The rapid increase in the
number of publications in scientific fields motivates
the development of automatic summarization tools
for scientific articles. The number of scientific arti-
cles published per year has been growing at a rate
of about 8% per year since the mid-17th century
(Kovanis et al., 2016). The number of scientific
papers indexed in the Web of Science database has
been increasing at a rate of about 3% per year since
the 1970s.

Investigating the inner workings of the peer re-
view system can be challenging due to the need to
protect publishers’ privacy and intellectual prop-
erty rights. However, OpenReview1 provides a way
to examine how the process is evolving in some
areas, such as how authors are given opportunities
to respond to feedback and how communication be-
tween authors and reviewers is being strengthened.

Argument mining in peer-review text is an im-
portant tool in the scientific publication process
as it enables the automated analysis and extrac-
tion of key claims, evidence, and reasoning pre-
sented in a manuscript. This improves the effi-
ciency, consistency, and fairness of the review pro-
cess, detects potential biases, and assists authors
in identifying areas for improvement, ultimately
leading to a higher-quality manuscript and aiding
in the advancement of scientific knowledge. Ar-
gument Mining can be used to efficiently extract
the most relevant parts from reviews, which are
paramount for the publication decision. Fromm et
al. (Fromm et al., 2020) propose a simple argu-
mentation scheme that distinguishes between non-
arguments, supporting arguments, and attacking

1https://openreview.net/
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Summary
Pros: The paper introduces a novel approach for sentence representation by using multiple attentional vectors to extract multiple representations for a

sentence. The authors have demonstrated consistent gains across three different tasks, providing evidence of the effectiveness of the model.
The paper is reasonably clear, with no major technical issues, and the new model lends itself to more informative visualizations than could be
obtained otherwise. The model also beats reasonable baselines on three datasets. The architecture is interesting and can be used within larger text
understanding models. The approach is different from prior work, which is a positive aspect of the paper.

Cons: a lack of analysis on the 2D representations, concerns about the value of r when applied to short sentences, a need for performance evaluations on
dev sets or learning curves, and a lack of transparency in reporting model sizes. The paper also has a problem in its presentation, with no training
objective defined, and there is a lack of appropriate addressing of prior work. The visualizations provided do not offer compelling evidence for
the use of multiple attention vectors, and further experiments are needed to demonstrate the effectiveness of the 2D structure of the embedding
matrix. Overall, there is a lack of convincing evidence that the 2D structure of the embedding matrix provides any meaningful advantage over
similar attentive embedding models.

Table 1: Pros and Cons summary output of paper (ICLR 2017); https://openreview.net/forum?id=
BJC_jUqxe

Aspects Summary
Substance Pros: The paper introduces a novel approach for sentence representation using 2D structure of embeddings, which produces more

informative visualizations and beats reasonable baselines on three datasets.
Cons: the reviewer would like to see more analysis on the 2D representations in order to be convinced of its effectiveness ablation
studies?

Clarity Pros: The paper is reasonably clear and there are no major technical issues.
Cons: there are issues with the penalization term section and the paper’s focus on unsupervised learning in the abstract, introduction
and related work sections, and with the lack of clear definition of the training objective.

Meaningful Compar-
ison

Cons: There is a substantial amount of prior work which the authors do not appropriately address , some of which is listed in previous
comments .

Originality Pros: the main innovation of this paper is the 2D structure of the embedding matrix Cons: 2D structure of the embedding matrix is not
clearly shown to provide significant advantages over similar attentive embedding models already present in the literature.

No-aspect Pros: This paper presents a method for sentence representation using a 2D matrix and self-attentive mechanism on LSTM encoder.
It produces heat-map visualizations and good performance on downstream tasks. The model extracts matrix-valued sentence
representation and could be used for tasks beyond NLP. The authors have shown consistent gains across multiple datasets.
Cons: Some important experiments are missing, visualizations lack support for multiple attention vectors, main claims require more
experimentation, unclear usage and conversion of embedding for downstream tasks, better model structure explanation needed, no
comparison with similar works, minor issues like typos present.

Table 2: Aspect wise Pros and Cons summary output

arguments (NON/PRO/CON) as outlined in (Stab
et al., 2018). This scheme can also be interpreted
as a simplified version of the claim-premise model,
where if there is a single claim, "The paper should
be accepted," and arguments that either support or
attack this claim.

An editor or chair writes a meta-review eval-
uating and summarizing the strengths and weak-
nesses of a peer review process as it pertains to a
specific research or manuscript. Classification of
meta-review is important because it allows read-
ers to evaluate the quality and reliability of the
research presented in the text and make informed
decisions about its validity and usefulness. Addi-
tionally, it is important for researchers as it allows
them to identify areas of improvement in their own
research and writing process. Furthermore, it is
essential for editors as it enables them to provide
constructive feedback to authors, make informed
decisions about the publication of a manuscript,
and identify potential issues in the field. Thus,
meta-review and its classification play a vital role
in the scientific publication process. MReD dataset
(Shen et al., 2022) consists of 7,089 meta-reviews
and all its 45k meta-review sentences. Each sen-
tence in a meta-review is classified into one of the
9 pre-defined intent categories: abstract, strength,

weakness, rating summary, area chair (AC) dis-
agreement, rebuttal process, suggestion, decision,
and miscellaneous(misc).

Summarizing the pros and cons of a peer review
text is crucial as it provides readers with a compre-
hensive understanding of the strengths and weak-
nesses of the peer review process as it pertains to a
specific research or manuscript. This enables them
to evaluate the quality and reliability of the research
presented in the text, and make informed decisions
about its validity and usefulness. Moreover, sum-
marizing the pros and cons of a peer review text
is of great importance for researchers, as it allows
them to identify areas of improvement in their own
research and writing process. For example, if a
manuscript is rejected due to poor methodology,
researchers can focus on addressing and improv-
ing that aspect of their work in future submissions.
Furthermore, summarizing the pros and cons of a
peer review text is essential for editors/area chair,
as it enables them to provide constructive feedback
and to make informed decisions about the publica-
tion of a manuscript, and identify potential issues
in it, which can lead to taking appropriate steps to
address them. Review text also contains aspects
associated with it, such as novelty and motivation.
Editors would benefit from knowing the specific
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pros and cons that reviewers have written about
each aspect. In this research, we propose a way
to generate both a generic pros and cons summary,
as well as an aspect-wise pros and cons summary.
This information can assist editors/area chair in
quickly understanding which aspects of the paper
need improvement and which do not, and can be
beneficial for author as well to get a quick overview
of the reviews. To demonstrate this, we present out-
put from our proposed architecture in Table 1 and
Table 2.

There exist reference summary for pro and con
summary. Also the generation of human based
summaries is expensive and require domain ex-
perts to summary. The meta reviewer usually men-
tions opinions about the submission’s strengths and
weakness as opinions about the submission’s weak-
nesses. As strength mentioned in the meta review
is mostly the summary of the pro argument and
strength mentioned in the meta review is mostly
the summary of the con argument of a paper. We
used this idea and used the strength and weakness
mentioned in the meta review as the reference sum-
mary.

We summarize our contributions as follows :-

• We propose an effective architecture that
utilizes a supervised method for generating
generic pros and cons summaries, to assist the
editors and authors in analyzing peer reviews.

• We investigate the utilization of meta-reviews
for this task without the availability of a refer-
ence summary for training.

• We propose a novel architecture that utilizes
an unsupervised method for generating aspect-
based pros and cons summaries for the same
task.

• We have annotated 150 papers with aspect-
based summaries to evaluate the generated
aspect-based summary.

We make our code public2.

2 Related Work

2.1 AI in Peer Reviews
The use of artificial intelligence in peer review has
been garnering attention due to recent advance-
ments in AI research. A dataset of scientific peer

2https://github.com/sandeep82945/
Pros-Cons-Summarization-of-peer-reviews

reviews was made available to facilitate research in
this domain(Kang et al., 2018). Additionally, vari-
ous studies have explored the correlation between
overall recommendation scores and individual as-
pect scores. The CiteTracked dataset was intro-
duced to ascertain the impact of citations from peer
reviews(Plank and van Dalen, 2019). Furthermore,
tools have been developed to analyze the quality,
tone, and quantity of peer review comments, such
as those mentioned in(Wicherts, 2016). The ASAP-
Review dataset was formulated with the objective
of automating scientific peer review(Yuan et al.,
2021). Recently, a novel multitasking system was
proposed, which leverages inter-dependency by
sharing representations between two related tasks,
such as aspect categorization and sentiment clas-
sification(Kumar et al., 2021). Shallow linguistic
features, for instance, sentiment words, have been
studied by Bornmann et al. to analyze language
use in peer reviews(Bornmann et al., 2012).

2.2 Abstractive and Extractive
Summarization

Extractive summarization involves creating sum-
maries by selecting key sentences or phrases di-
rectly from the source text, retaining the original
content’s phrasing(Collins et al., 2017). Initially,
extractive methods relied on simple statistical mea-
sures such as word frequency(Luhn, 1958b) and
document location(Baxendale, 1958). As research
evolved, classifiers using supervised learning iden-
tified potential summary sentences(Kupiec et al.,
1995). Factors like sentence position, length, ti-
tle words, and the presence of proper nouns be-
came crucial cues(Yang et al., 2017; Nenkova
et al., 2006). Modern extractive summarization
predominantly employs neural models, integrating
embeddings, CNNs, and RNNs(Kobayashi et al.,
2015; Cheng and Lapata, 2016), and these sys-
tems often rank sentence salience before summa-
rization(Erkan and Radev, 2004; Parveen et al.,
2016).

Conversely, abstractive summarization crafts
novel sentences and may use words not found in
the source text(Widyassari et al., 2022). Although
it offers more flexible summaries, the complex-
ity of generating new content requires advanced
natural language processing(Gambhir and Gupta,
2017). The encoder-decoder paradigm has emerged
as a prominent technique in abstractive summariza-
tion(Xu et al., 2020; Lee et al., 2020; Yao et al.,
2020), enabling efficient parameter optimization
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and smoother summary generation.

2.3 Review Summarization
Several studies have explored the summarization of
product reviews(Li et al., 2010; Gerani et al., 2014,
2019; Mason et al., 2016). For instance, Gerani
et al.(Gerani et al., 2014) proposed an abstractive
summarization system for product reviews, utiliz-
ing a template-based Natural Language Generation
(NLG) framework and leveraging the discourse
structure of reviews.

Aspect-based summarization involves generat-
ing focused summaries based on specific points of
interest. WikiAsp(Hayashi et al., 2021), a large-
scale dataset for multi-domain aspect-based sum-
marizations, has been introduced. One study was
conducted to provide insights into hotels that rat-
ings might not fully capture by analyzing customer
reviews from hotel booking websites. The topic
modeling technique, Latent Dirichlet Allocation
(LDA), was applied to uncover hidden informa-
tion and aspects, followed by sentiment analysis
on classified sentences and summarization(Akhtar
et al., 2017). An interactive attention mechanism
was proposed for aspect- and sentiment-aware ab-
stractive review summarization(Yang et al., 2018).
The model(Kunneman et al., 2018) incorporates
representations of context, sentiment, and aspect
words within reviews into the summary generation
process. The authors developed three systems for
generating pros and cons summaries of product
reviews, which included a system based on syntac-
tic phrases and two neural-network-based systems.
These systems were evaluated in two ways: us-
ing held-out reviews with gold-standard pros and
cons, and by soliciting human annotators to rate
the systems’ outputs in terms of relevance and com-
pleteness.

2.4 Peer Review Summarization
Peer-review summarization is a specific task that
aims to automatically generate a summary of peer
reviews for a particular research paper. Numerous
studies have focused on this task, employing var-
ious techniques and models. Several works have
built systems to generate meta-reviews from peer
reviews by summarizing them.

The authors present MetaGen(Bhatia et al.,
2020), a system that generates meta-reviews from
peer reviews to aid the decision-making process in
scientific papers and proposals. It utilizes an ex-
tractive and fine-tuned UniLM approach for craft-

ing final abstractive meta-reviews and making ac-
ceptance/rejection decisions. A deep neural ar-
chitecture was proposed for generating decision-
aware meta-reviews from peer reviews(Bhatia et al.,
2020). The model employs a multi-encoder trans-
former network for predicting the decision and gen-
erating the meta-review.

Previous studies have employed classification
and regression techniques to evaluate the quality of
scientific papers through analysis of peer reviews.
Additionally, some research has focused on gen-
erating meta-reviews by summarizing the content
of multiple reviews. To the best of our knowledge,
our work is the first to summarize the argument
based pros and cons of peer reviews.

3 Methodology

Figure 1: Our proposed architecture for generic Pros
and Cons summarization

Figure 1 shows the architecture of our proposed
model for generating pro and con summary.

3.1 Input Layer
Initially, we have a group or set of reviews D =
{R1, R2, ..., Rn}, associated with a specific doc-
ument or article. We merge all the reviews of a
document into one comprehensive review S. Each
S = {s1, s2, ..., sm}, is a set of sentences, where
si ∈ S denotes a single sentence.

3.2 Argument Classification
Next, the set of sentences S are passed with a
classifier to identify those review sentences which
are argumentative. Following (Fromm et al., 2020)
, we utlized a BERT large model with 340M
parameters fine-tuned on the Argument Mining
dataset (based on bert-large-cased) to classify the
sentences into pro, con and non summary. We
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Figure 2: Our proposed aspect based pros and cons summarization architecture

reported a micro F1 score of 0.759%, which is
almost the same as the original paper. For example
:-

Spros = {s1, s3, ....sn−1}
Scons = {s2, s5, ....sn−3}
Snons = {s4, s6, ....sn}

Here, Spros contains a set of sentences classified
as pro, Scons contains the sentences classified as
con and Snon contains the sentences classified as
nons. Non-argument sentences typically do not
contain important information that is necessary for
making a decision. Therefore, we discarded them.

3.3 Meta Review Classification

The reference summary of pros and cons summary
is unavailable and the annotation of the summary
is costly and need domain experienced experts. So
we utilized the MReD dataset (Shen et al., 2022)
which consists of 7,089 meta-reviews and all its 45k
meta-review sentences. Each sentence in a meta-
review is classified into one of the 9 pre-defined
intent categories: abstract, strength, weakness, rat-
ing summary, area chair (AC) disagreement, re-
buttal process, suggestion, decision, and miscel-
laneous(misc). We trained the RoBERTa-large +
CRF with the same setting as mentioned in the
paper. We hypothesize that a meta-reviewer will
mention both the strengths and weaknesses of a
product or research study in their summary, akin to
a pro and con summary. So, we used the pre-trained
model to extract the strength and weaknesses. Sup-
pose, M is the set of review sentences in meta
review. We utilize the set of sentences classified
into strength Mstrength ∈ M and belonging to
weakness Mweaknesses ∈ M for training PCSum-

marizer, described in the next section.

3.4 PCSummarizer
Generative pre-trained models have exhibited out-
standing results in the field of natural language gen-
eration, specifically in the area of text summariza-
tion (Dong et al., 2019; Lewis et al., 2020a). The
adaptation of natural language processing models
to specific domains, also known as domain adap-
tation, is a widely researched topic (Fu and Liu,
2022; III, 2009; Yu et al., 2021). Hua and Wang
(2017) (Hua and Wang, 2017) were the pioneers
in researching the adaptation of neural summariza-
tion models to specific domains, and it was found
that these models possess the capability to select
pertinent information even when trained on out-of-
domain data.

In order to make the model capture the argumen-
tative reviews (i.e. both pro and con sentences),
the input text is formatted in the following way as
source input for the Encoder.

Pro sentences [SEP] Con sentences
Here [SEP] is a special token.
The encoder first transforms the input into a se-

quence of hidden representations M .

ht = ProsDecoder(M,yt−1) (1)

We initialized the ProsDecoder i.e. decoder for
pros summary generation with the pre-trained Bart
Large (Lewis et al., 2020a) decoder trained on
CNN-daily mail. We implement the teacher forcing
method on the ProsDecoder with the Mstrength to
fine-tune the decoder.

P (yt|y<t,C)
(k) = softmax(Wdht + bd) (2)
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where ht is the hidden representation of yt (the t-
th word in the target summary). k is the probability
of generating the k-th token yt given the previously
generated < t tokens and some context C.

We maximize the conditional log likelihood for
a given N observation
(C(i), Y (i))Ni=1

Lpros = −
i=N∑

i=1

t=T∑

t=1

logP (y
(i)
t |y(i)<tC

(i)) (3)

Similarly, we define the ConDecoder :-

ht = ConsDecoder(M,yt−1) (4)

The ConsDecoder (i.e. decoder for cons sum-
mary generation) is initialized with the pre-trained
Bart Large decoder trained on CNN-daily mail. We
implement the teacher forcing method on the Cons-
Decoder with the Mweakness to train the decoder.

P (yt|y<t,C)
(k) = softmax(Wdht + bd) (5)

We maximize the conditional log likelihood for
a given N observation
(C(i), Y (i))Ni=1

Lcons = −
i=N∑

i=1

t=T∑

t=1

logP (y
(i)
t |y(i)<tC

(i)) (6)

We introduced an appropriate loss function as
defined below to ensure that the similar summaries
are not generated for pros and cons :-

Ldiss = sim(Spros, Scons) (7)

Here, sim is the similarity between the two sum-
maries. We calculate the similarity between the two
summaries by [CLS] pooling as in BERT(Devlin
et al., 2019).

We employ the following loss function as our
final training loss :-

L = Lpros + Lcons + Ldiss (8)

Here, we combine the MLE loss from the Pros-
Decoder and ConsDecoder and the dissimilarity
loss while training the summarizer.

3.5 Aspect based pros and cons
summarization

In this section, we describe our proposed architec-
ture for aspect-based pros and cons summarization.
Figure 2 shows the architecture of our aspect based
pro and con summarization. Supervised training
is not possible due to the unavailability of golden
pros and cons summary for each aspect. So, we
propose an unsupervised technique. Similar to the
previously described input layer, the reviews are
combined. The reviews are then passed to the as-
pect classifier. We use the already annotated dataset
for our evaluation. Suppose the output after the
aspect classification is Sa, where S is the set of
sentences that belongs to aspect category a. The
sentences belonging to each aspect Sa are passed
to the argument classifier, which classifies the pre-
trained argument classifier as described in Section
3.2. The output is Spros

a , Scons
a , Snons

a . Similarly,
as the non-arguments Snons

a do not play much role
in the decision, it is filtered out.

3.5.1 Clustering
To remove the review sentences that weakly be-
long to an aspect category, we produce a vector Ai

for each aspect category by computing the average
of sentence embeddings of the sentences belong-
ing to that aspect. In particular, for each aspect
category, we produce a vector that best represents
the category, represented by the centroid. We cre-
ate the sentence embedding by pre-trained BERT
[CLS] pooling. We further control the selection of
review sentences by filtering them based on their
aspect category. In particular, we select the review
sentences in Spros

a and Scons
a , given the aspect cat-

egory a it belongs to. Our goal is to select the
review sentences close to their aspect centroid. We
iterate through every review sentence sen in Spros

a

and Scons
a , we add it to the filter review set Sfpros

a

and Sf cons
a if cos(Ei, Ak) ≤ θ3. Where Ei is the

embedding of the review sentence sen.

3.5.2 Summarization
Next, we create a abstract summary of the Sfpros

a

and the Sf cons
a . We used the model PCSummarizer

trained to create pros and cons summary of the re-
view to create the final summary for each aspect as
described in Section 3.4. If review text Sfpros/cons

a

is less than 30 words, i.e. short reviews, they don’t
need further summarization as they are already con-

3We set the threshold θ as 0.5 empirically
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Conference Number of papers Number of reviews Acceptance rate avg words
ICLR 2017 427 1,304 67% 399
ICLR 2018 907 3,499 35% 403
ICLR 2019 1,419 4,332 35% 403
ICLR 2020 2,213 6,722 27% 409

Table 3: Dataset statistics

cise. Using PCSummarizer may not add any value,
so in that case, we don’t further summarize from it.

4 Experiments

4.1 Dataset
We use the dataset collected from OpenReview4 by
the papers (Yuan et al., 2022; Fromm et al., 2020).
The dataset contains the reviews from computer-
science conferences. Table 3 shows the statistics of
the dataset used. For training PCSummarizer we
split the dataset into 0.7, 0.1, 0.2 for training, vali-
dation and test respectively. To evaluate our aspect-
based summarization method, we recruited two ex-
pert NLP annotators with a strong command of the
English language. They generated summaries for
150 papers from the dataset presented in (Wicherts,
2016), which contains peer reviews classified into
different aspects. The definition of these aspects is
provided in Appendix Table 8.

4.2 Implementation details
For PCSummarizer, we use the BART large model
pre-trained on CNN/DailyMail dataset from the
hugging face library 5. We initialized the pre-
trained weights to both the decoder and the encoder
before fine-tuning them. We performed hyperpa-
rameter tuning on the validation set and reported
the best-performing parameters. We use a dynamic
learning rate, warm up 1000 iterations, and decay
afterwards. We trained the model for 10 epochs
with a batch size of 4. We train all the models on a
single GPU (NVIDIA A100-PCIE 40GB).

4.3 Result and Analysis
Tables 4 and 5 present the results of a comparison
between the various summarization methods, in-
cluding extractive methods (LexRank, TextRank,
SumBasic, Luhn) and abstractive methods (Pega-
sus and Bart) for summarization without aspects
and with aspects, respectively. The results indi-
cate that the abstractive methods performed better
than the extractive methods in terms of the ROUGE
score for both the summarization tasks. The pros

4https://openreview.net
5https://huggingface.co/

and cons were separately input into the extractive
systems, and we report the average. Similarly, for
aspect-based pros and cons summarization, we cal-
culated the score aspect-wise for each aspect and
reported the average. BERTScore (Zhang et al.,
2020b) computes a similarity score between each
token of a candidate sentence and that of a refer-
ence sentence, relying on contextual embeddings
to calculate token similarity, as opposed to exact
matches. BERTScore is mainly used in abstrac-
tive summarization, so we also report BERTScore
for the abstractive baselines Pegasus and BART.
Similar to the extractive summarization, we trained
the pros and cons encoder and decoder architec-
ture separately and reported the average. We found
that BART performed better compared to Pegasus
with 1.63 F1 BERTScore and 2.12 Rouge-1 F1
score for full reviews pros and cons and BART
with 1.96 BERTScore and 0.6 Rouge-1 F1 score
for aspect-based summarization. Our proposed
method APCS performed better than simple BART
with 0.71 BERTScore and 1.21 Rouge-1 F1 score
points for full reviews and 0.75 BERTScore and
1.68 Rouge-1 F1 score for aspect-based summa-
rization. As we used the pre-trained model for
argument classification and meta review classifica-
tion, we don’t report those results. However the
result can be found in the original paper.

4.4 Ablation Study
We analyze the effectiveness of our proposed model
(APCS) by conducting an ablation study, as shown
in Table 7. By comparing the results of "APCS w/o
diss" in Table 7 with an improvement of 0.93 and
the original BART with a distinct encoder in Table
4, it is evident that inputting the pros and cons to-
gether improves the results compared to training
them separately. This is likely due to the fact that
sharing an encoder allows the model to learn gen-
eral features that are useful for both summarization
tasks.

When we ran the model (APCS without differen-
tiation loss), we observed that the generated sum-
maries for the cons sometimes included informa-
tion that was more appropriate for the pros. This
may be due to the fact that during the annotation
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Model BERTScore Rouge
P R F1 R1 R2 RL

LexRank (Erkan and Radev, 2011) – – – 24.30 5.90 25.18
TextRank (Mihalcea and Tarau, 2004) – – – 24.32 5.89 25.12
LSA (Ozsoy et al., 2011) – – – 25.88 6.20 25.72
Luhn (Luhn, 1958a) – – – 26.26 6.18 25.81
KL-Sum (Haghighi and Vanderwende, 2009) – – – 27.43 6.89 25.87
Pegasus (Zhang et al., 2020a) 50.17 49.55 49.98 28.42 7.05 26.32
BART (Lewis et al., 2020b) 50.73 52.65 51.61 30.40 8.76 27.14
APCS 51.43 53.43 52.32 31.61 9.12 28.80

Table 4: Experimental results on generic pros and cons summarization; ROUGE(F1), BERTScore. Here,
P→Precision, R→Recall, R1→ROUGE with unigram, R2→ROUGE-2 for bigram overlap, RL→ROUGE-L
for Longest Common Subsequence

Model BERTScore Rouge
P R F1 R1 R2 RL

LexRank (Erkan and Radev, 2011) – – – 26.30 7.86 27.17
TextRank (Mihalcea and Tarau, 2004) – – – 26.29 7.81 27.10
LSA (Ozsoy et al., 2011) – – – 27.82 8.16 27.71
Luhn (Luhn, 1958a) – – – 28.11 8.12 27.59
KL-Sum (Haghighi and Vanderwende, 2009) – – – 29.39 8.78 27.86
Pegasus (Zhang et al., 2020a) 51.67 51.64 51.60 30.29 7.05 28.31
BART (Lewis et al., 2020b) 52.71 54.62 53.56 32.41 10.74 29.11
APCS 53.41 55.42 54.31 32.62 11.09 30.79

Table 5: Experimental results on aspect-based pros and cons summarization

w/o Aspect Aspect based
Model A-Coverage Readability Diversity I A-Coverage Readability Diversity I
KL-Sum(Erkan and Radev, 2011) 3.0 8.5 3.0 3.0 5.0 8.0 3.5 3.5
Pegasus (Zhang et al., 2020a) 4.0 4.5 3.0 3.0 5.5 4.5 3.0 3.5
BART 4.25 5.0 4.5 4.0 4.5 5.0 4.5 6.0
APCS 4.5 5.0 5.0 4.25 7.25 5.0 5.0 6.25

Table 6: Human evaluation results. Here, A-Coverage denotes Aspect coverage; I → Informativeness ; Bold text is
intended to highlight the best performance.

R-1 R-2 R-L
APCS w/o diss 31.33 9.02 28.24
APCS(aspect based) w/o clustering filter 32.03 10.78 30.12

Table 7: Ablation study of our experiments

process, reviewers/editors often use polite language
when discussing cons/weakness, such as "I like the
paper but..." or "The paper is written well but there
are a few technical...". As a result, the ConsDe-
coder may have learned to include some pros infor-
mation in the summary as well during the training
process. We observed a slight improvement in the
results when the differentiation loss was included
in the model, which resulted in a better separation
of the pros and cons summaries.

For aspect-based unsupervised summarization,
we also removed the aspect sentence filtering and
observed a drop in the results by 0.59 Rouge-1
F1 score. This demonstrates the effectiveness of
aspect-based cluster filtering in improving the over-
all performance of the model.

4.5 Human Evaluation

We conducted a human evaluation to assess the
effectiveness of our model by providing a set of 150

randomly selected papers along with their ground-
truth reviews and generated summaries to three
domain experts in NLP with a minimum of 5 years
of experience. Table 6 shows the results of the
evaluation. We asked the responders to evaluate
the summaries by rating them between 1 to 10
on Likert Scale (Taherdoost, 2019) based on the
following :

• Q1 (Aspect-coverage): Assesses which sum-
mary effectively captures the opinions about
the specified aspects.

• Q2 (Readability): Evaluates the readability of
the summaries.

• Q3 (Diversity): Identifies which summary
contains the least amount of repetitive infor-
mation.

• Q4 (Informativeness): Assesses the useful-
ness of the summary by providing information
about the original reviews.

Consistent with the automated evaluation results,
summaries generated by "APCS without aspect"
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achieved the best scores for Aspect-Coverage, In-
formativeness, and Diversity compared to the base-
lines. However, the model may still generate re-
dundant phrases in summaries, particularly in the
pros and cons, resulting in a low diversity score.
Additionally, the readability score for APCS (both)
was lower than that of KL-Sum. The reason for
this is that KL-Sum is extractive, meaning that the
summaries are taken directly from human-written
reviews, while APCS generates abstractive sum-
maries. The readability of BART and APCS (both)
is similar. In contrast, the abstractive summary
generated by APCS (aspect) effectively captures
ideas on aspects. The APCS aspect-based model
achieved high Aspect-coverage as it focuses mainly
on each aspect of the reviews. However, APCS
(both) performed better than PEGASUS on every
score, despite both being abstractive methods of
summary generation. These results validate the
quality of our generation method. We also ob-
served that our model fails when argument is mis-
classified by the pre-trained model or the aspect
classification model makes wrong prdecitions.

5 Conclusion and Future Work

We have proposed a novel architecture for gen-
erating both generic and aspect-based pros and
cons summaries of peer reviews, utilizing both su-
pervised and unsupervised methods. Our results
demonstrate the effectiveness of our proposed ar-
chitecture. As a future work, investigating the
scalability of our proposed architecture for larger
datasets and its performance on a diverse range of
research domains would also be valuable.
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Aspect Definition
Substance Does the paper contains substantial experiments to demonstrate the effectiveness of proposed

methods? Are there detailed result analysis? Does it contain meaningful ablation studies?
Motivation Does the paper address an important problem? Are other people (practitioners or researchers)

likely to use these ideas or build on them?
Clarity For a reasonably well-prepared reader, is it clear what was done and why? Is the paper

well-written and well-structured?
Meaningful Com-
parison

Are the comparisons to prior work sufficient given the space constraints? Are the comparisons
fair?

Originality Are there new research topic, technique, methodology, or insight?, etc
Soundness Is the proposed approach sound? Are the claims in the paper convincingly supported?
Replicability Is it easy to reproduce the results and verify the correctness of the results? Is the supporting

dataset and/or software provided?

Table 8: Definition of aspects
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Abstract
Citation graphs represent the citation relations
between papers, and they are commonly used
by researchers to identify relevant papers. How-
ever, citation graphs do not always represent
how papers are related to each other. To make
more effective use of citation graphs to discover
relevant papers, we can consider identifying
the functions of citations and label each edge
in the citation graphs with its function. This
paper proposes a method to identify the func-
tions of citations automatically. The proposed
model utilizes language models, e.g., SciBERT,
to identify the description of citation functions.
However, the language models are limited in
terms of the number of input tokens; thus, the
entire citing paragraph cannot be processed at
once. To overcome this problem, we analyzed
the distribution of the descriptions of citation
functions in the citing paragraphs and deter-
mined the focusing part in identifying the ci-
tation functions. Experiments conducted on
scientific paper data demonstrated the effective-
ness of the proposed method.

1 Introduction

Scientific papers cite publications for various rea-
sons, and the connections between papers are es-
tablished through citations. In addition, citation
graphs1 represent citations in a graph structure, and
they are commonly used by researchers to identify
relevant papers. However, the edges in citation
graphs only represent the citations between papers;
thus, citation graphs do not always represent how
papers are related to each other. To make more
effective use of citation graphs in order to discover
relevant papers, we can consider identifying the
functions of citations and label each edge in the
citation graphs with its function2.

Thus, in this paper, we propose a method to iden-
tify the functions of citations automatically based

1https://citationgraph.org/
2For citations via URLs, (Tsunokake and Matsubara, 2022)

proposed a method to identify the function of citations.

on the text of citing paragraphs. The proposed
model utilizes language models, e.g., SciBERT
(Beltagy et al., 2019), to identify the citation func-
tions. However, the language models are limited
in terms of the number of input tokens; thus, the
entire citing paragraph cannot be processed at once.
To overcome this problem, we analyzed the distri-
bution of the descriptions of citation functions in
the citing paragraphs and determined the focusing
part in identifying citation functions. Experiments
conducted on scientific paper data demonstrated
the effectiveness of the proposed method.

2 Datasets for Citation Function
Identification

A previous study (Teufel et al., 2006) published
the first dataset for the citation function identifica-
tion task. They manually annotated 548 citation
instances extracted from 161 papers in the compu-
tational linguistics domain as one of the 12 classes
of citation functions. However, their dataset suf-
fered from several limitations, e.g., the small data
size and the coverage of only one research domain.
Despite these issues, no new datasets were created
for years due to various difficulties, including the
definition of labeling schema and the annotation of
gold labels (Kunnath et al., 2022b).

Recently, several new datasets for the citation
classification task, e.g., ACL-ARC (Jurgens et al.,
2018) and SciCite (Cohan et al., 2019), have been
created and made available to the public. The ACL-
ARC dataset comprises approximately 2,000 cita-
tion instances extracted from papers in the ACL
Anthology, where each instance is labeled as ei-
ther one of the six classes of citation functions, i.e.,
background, compares_contrasts, extension,
future, motivation and uses. The SciCite
dataset contains approximately 11,000 citation in-
stances sampled from papers in the computer sci-
ence and medical domains with class labels of ei-
ther background, method, or result.
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In addition, a large and diverse dataset has
been created for the Citation Context Classifica-
tion Shared Task (Kunnath et al., 2020, 2021). The
shared task provided a dataset of 3,000 citation in-
stances sampled from papers in various domains.
Here, each citation instance was labeled by the au-
thors of the citing papers under the same schema as
ACL-ARC. However, the classification labels were
annotated at each author’s own discretion; thus, the
consistency of the labels over the entire dataset was
not guaranteed.

3 Task Definition and Data Analysis

3.1 Task Definition

We propose a method to automatically identify
the citation functions based on the text con-
taining citations. Specifically, from a given
paragraph containing citations, we propose a
method to extract the part that describes why
the target paper was cited, and classify the
described citation function into one of the
eight categories3: background, motivation,
uses, extends, similarities, differences,
compare/contrast, and future work.

3.2 FOCAL Dataset

In this study, we used the dataset from the Func-
tion Of Citation in Astrophysics Literature (FO-
CAL) shared task (Grezes et al., 2023). The FO-
CAL dataset comprises of 2,421 training examples,
606 validation examples, and 821 test examples
extracted from papers in the astrophysics domain,
and each example contains the paragraph text and
the single or multiple positional information of the
target citation. Training examples also include the
positional information and the class label of the de-
scriptions of the citation functions for data analysis
and model training. Note that some examples have
multiple spans that describe the citation function,
and the class label is annotated on each span in
such cases.

3.3 Data Analysis

We analyzed the class label distribution of the cita-
tion functions and the positional relations between
citation tags and citation function descriptions in
the training set.

3A detailed explanation of each category is avail-
able at https://ui.adsabs.harvard.edu/WIESP/2023/
LabelDefinitions.

Table 1: Number of examples with each class of citation
function. Note that the sum of each row does not match
the number of training examples, because some exam-
ples are labeled with more than one citation function
class.

Function class Number of examples
Background 1,098 45.35%
Motivation 161 6.65%
Uses 605 24.99%
Extends 7 0.29%
Similarities 202 8.34%
Differences 87 3.59%
Compare/Contrast 400 16.52%
Future work 27 1.12%

Table 2: Percentage of sentences containing descrip-
tions of citation functions. For preceding sentences,
cases with no sentences before the citing sentence are
excluded. For following sentences, cases with no sen-
tences after the citing sentence are excluded.

Inclusion percentage
Preceding sentences 285/2,419 11.78%
Citing sentences 2,436/2,464 98.86%
Following sentences 258/2,419 10.66%

3.3.1 Distribution of Citation Function Label
Table 1 shows the number of examples labeled for
each class of citation function. As can be seen,
the most frequent class is background represent-
ing approximately 45% of the analyzed examples.
In contrast, other classes, e.g., extends and future
work, include low number of examples.

3.3.2 Positional Relation with Citation Tags
We analyzed the positional relations between the
citation tags and the citation function descriptions.
Here, we initially split each paragraph into sen-
tences using the NLTK sentence tokenizer (Bird
et al., 2009), and then we extracted the citing sen-
tences and their preceding and following sentences.
Next, we computed the percentage of sentences
containing the descriptions of the citation functions
for the citing, preceding and following sentences.

Table 2 shows the percentage of sentences con-
taining the descriptions of the citation functions.
As shown, the preceding and following sentences
contained descriptions of citation functions approx-
imately 10% of cases. In contrast, only 28 citing
sentences without citation function descriptions
were found. These results indicate that the citing
sentences almost always contain descriptions of
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Figure 1: Structure of the proposed model

the citation functions; however, it is rare for such
descriptions to extend to nearby sentences.

4 Method

4.1 Model Structure
The proposed method utilizes language models,
e.g., SciBERT (Beltagy et al., 2019) to identify the
citation functions as shown in Figure 1. The model
comprises an encoder and a token classifier, and it
identifies the citation functions as follows:

1. Convert the input text to a sequence of words
and add [CLS] and [SEP] at the start and end
of the sequence.

2. Transform the words in the citing sentence to
feature vectors using the encoder.

3. Output a BIO tag sequence that indicates
whether each word is the beginning, inside
or outside of the span describing the citation
function with the token classifier. Here, the
Viterbi algorithm (Forney, 1973) is employed
to avoid generating invalid sequences, e.g.,
sequences where I follows O.

4. Generate a class label of citation functions for
each subsequence starting with B.

4.2 Range of Input Text
Note that the citing paragraph cannot be processed
at once by language models, e.g., SciBERT, due to
the limitation in the number of input tokens; thus,
we must determine which part of a paragraph to

Table 3: Citation function identification performance of
different language models

Model Word accuracy Exact match
SciBERT 68.13 34.14
RoBERTa 67.33 33.70
ALBERT-v2 67.01 32.06
DeBERTa-v3 67.76 35.02

focus on prior to inputting the text to the model.
When training the model, the focusing part can be
determined as the sentence containing the anno-
tated span of the citation function descriptions and
the m preceding and n following sentences. How-
ever, such annotations of the span of the citation
function descriptions are not given at the time of
prediction. Thus, based on the results of the anal-
ysis described in Section 3.3.2, we determine the
focusing part for prediction as the citing sentence
and the m preceding and n following sentences.

5 Experiment

5.1 Selection of Language Models

We compared the performance of several language
models on identifying the citation functions. Here,
we trained the SciBERT (Beltagy et al., 2019),
RoBERTa (Liu et al., 2019), ALBERT-v2 (Lan
et al., 2019), and DeBERTa-v3 (He et al., 2023)
models on 85% of the FOCAL training data as the
training subset, and we evaluated each model on
the remaining 15% of the data as the development
subset. During the training process, we fine-tuned
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Table 4: Citation function identification performance
with different input text window sizes

Input text window Evaluation metrics
prev(m) next(n) Full Generic Labels

0 0 51.11 78.03 64.82
0 1 51.26 75.49 66.23
0 2 49.23 74.16 64.61
0 3 49.60 74.83 65.15
1 0 50.87 79.82 64.57
1 1 50.93 76.61 64.75
1 2 49.08 76.45 64.72
2 0 51.97 79.99 64.23
2 1 49.73 74.52 65.96
3 0 51.90 79.13 67.10

each language model on 2,677 sentences contain-
ing citation function descriptions in the training
subset over 30 epochs. At the end of each epoch,
we evaluated the trained models by the word-based
labeling accuracy on 454 sentences in the develop-
ment subset and saved the best model.

Table 3 shows the performance of each model
evaluated by the word-based accuracy and sentence-
based exact match rate on the development sub-
set. As can be seen, the best word-based accu-
racy was achieved by the SciBERT, and the best
sentence-based exact match rate was obtained by
the DeBERTa-v3 model.

5.2 Selection of Input Text Window Size

We searched for the best setting for the focusing
part in the citing paragraphs by training the SciB-
ERT with different settings. Following the experi-
mental setup presented in the literature (Kunnath
et al., 2022a), we set the number of m preceding
and n following sentences. Here, for each m and
n value, we fine-tuned the SciBERT model on the
sentence containing citation function descriptions,
m preceding sentences, and n following sentences
in the training subset. We then saved the best model
over 30 epochs and evaluated this model on the de-
velopment subset in terms of the following metrics.

Full F1 score that considers the predictions to be
correct if both of the predicted placement and
class labels are correct.

Generic F1 score that considers the predictions to
be correct if the predicted placement is cor-
rect.

Table 5: Experimental result on validation data

Full Generic Labels
Baseline 23.68 59.86 42.87
Proposed model 54.08 79.92 65.94

Labels F1 score that considers the predictions to
be correct if the predicted class label is cor-
rect.

The evaluation results are shown in Table 4. As
can be seen, model performance was improved by
extending the focusing part to the preceding sen-
tences; however, extending the focusing part to the
following sentences did not contribute performance
improvement.

5.3 Final Evaluaiton

Based on the results of the experiments discussed
in Sections 5.1 and 5.2, we fine-tuned the SciBERT
model over 30 epochs on the sentences containing
the citation function descriptions and 3 preceding
sentences in the training subset. At the end of
each epoch, we evaluated the performance of the
model according to the word-based accuracy on
the development subset and saved the best model.
Then, on the FOCAL validation and test data, we
identified the citation functions using the trained
model. On the validation data, we compared the
performance to a baseline that always predicts the
description of the citation function as the citing
sentence and labels as background.

Table 5 shows the experimental results obtained
on the validation data. As shown, the proposed
model exhibited better results for all three eval-
uation metrics compared to the baseline, which
indicates the effectiveness of the proposed model.

On the testing data, the proposed model achieved
the scores of 51.97 Full, 73.00 Generic and 69.44
Labels.

6 Conclusion

This paper has proposed a method to identify the
functions of citations automatically based on the
text of citing paragraphs. The proposed method
utilizes the SciBERT model to identify the citation
function based on the citing sentences and nearby
sentences under the assumption that citation func-
tions are described near the citation. Experiments
conducted on scientific paper data demonstrated
the effectiveness of the proposed method.
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Table 6: Performance of identifying sentences contain-
ing citation function descriptions

Citing sentences (365 examples)
Precision Recall F1 score

Baseline 99.18 100.00 99.59
SciBERT 99.39 90.06 94.49
Non-citing sentences (4,153 examples)

Precision Recall F1 score
Baseline 0.00 0.00 0.00
SciBERT 0.73 10.87 1.36
Overall (4,518 examples)

Precision Recall F1 score
Baseline 99.18 79.74 88.40
SciBERT 19.74 74.01 31.17

Limitations

The proposed method assumes that the function
of the citation is always described in the citing
sentence and its surrounding sentences, while sen-
tences distant from the citing sentence do not con-
tain descriptions of citation functions. Thus, the
proposed method cannot extract descriptions of
citation functions for cases where the citation func-
tion is described in text distant from the citing sen-
tence. Although we uniformly determined the part
of the citing paragraph to focus on experimentally,
the part of the citing paragraph to focus on should
be dynamically determined.

To decide the focusing part of the citing para-
graph, we can consider using language models,
e.g., SciBERT, to identify sentences that are likely
to contain descriptions of the citation function.
To evaluate the effectiveness of this strategy, we
trained SciBERT to predict whether a given sen-
tence is likely to contain description of the cita-
tion function and evaluated the performance of the
trained model. Here, for training, we split the cit-
ing paragraphs in the training subset into sentences
using the NLTK sentence tokenizer and used sen-
tences containing descriptions of the citation func-
tions as positive examples, and sentences without
description of citation functions were used as nega-
tive examples. Then, the model was trained using
all positive examples and 10% of randomly sam-
pled negative examples and evaluated in terms of
precision, recall and F1 score on the development
subset. To better understand of the model’s per-
formance, we computed the evaluation metrics for
citing and non-citing sentences separately, and we

compared this model to a baseline that always pre-
dicts citing sentences to contain descriptions of the
citation functions.

Table 6 shows evaluation results. As can be
seen, the performance of the trained model for non-
citing sentences was very poor. In addition, the
overall performance was considerably worse than
that of the baseline. These results indicate that the
predictions are influenced greatly by whether each
given sentence is a citing sentence; thus, classifying
sentences with language models is not an effective
method to identify the sentences containing the
descriptions of citation functions.
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Abstract
Scientific research relies heavily on the ex-
change of knowledge through citations in aca-
demic literature. In the domain of astrophysics,
the precise classification of citation functions
and the extraction of contextual information are
critical for understanding the vast universe of
research papers. This paper presents the sys-
tem description for the WIESP 2023 FOCAL
shared task. We introduce an automated ap-
proach that leverages state-of-the-art language
models, including ALBERT, RoBERTa, BERT,
and DistillBERT, to classify citation functions
and extract context within astrophysical para-
graphs. Our system combines paraphrasing
and question-answering techniques to achieve
accurate results. Through comprehensive ex-
periments, we demonstrate the robustness of
our approach, with ALBERT consistently de-
livering strong performance.

1 Introduction

Scientific research is a dynamic process fueled
by the exchange of knowledge and ideas among
researchers (Goodman and Royall, 1988; Ghosal
et al., 2022; Tsunokake and Matsubara, 2022). In
the context of scientific research, citations also
serve as evidence and reference to past studies
(Garfield et al., 1964). In the realm of astrophysics,
the citation of existing literature plays a pivotal role
in advancing our understanding of the universe Re-
searchers rely on citations to establish the founda-
tion of their work, compare results, and build upon
previous discoveries. However, not all citations
serve the same purpose. Some citations provide
essential background knowledge, while others are
used for comparison, validation, or to support spe-
cific claims within a research paper (Lauscher et al.,
2022).

The citation graph is a foundational concept in
scientific research, including astrophysics, where it
plays a pivotal role in knowledge dissemination and
discovery (Jurgens et al., 2018; Guo and Dai, 2022).

This intricate network of references connects re-
search papers, providing a basis for understanding,
validation, and navigation within the vast and dy-
namic field of astrophysics literature. Citations
serve as the foundation of knowledge, allowing
researchers to establish context, validate findings,
and trace the intellectual lineage of ideas (Cohan
et al., 2019a). They also facilitate collaboration,
highlight emerging trends, and aid in the navigation
of extensive literature. Understanding the functions
of citations is crucial in harnessing the full poten-
tial of the citation graph, and the FOCAL challenge
at IJCNLP-AACL 2023 (Grezes et al., 2023) seeks
to automate this classification, contributing to the
advancement of astrophysical research and knowl-
edge dissemination. Furthermore, as part of this
challenge, we aim to identify not only the functions
of citations but also the associated span of text in
the paragraph that justifies these functions, enhanc-
ing the depth of understanding within astrophysical
literature.

Moreover, recent advancements in language
models (LMs) have provided exciting opportuni-
ties to tackle this challenge more effectively. These
models, which are at the forefront of natural lan-
guage processing (NLP), stand as powerful tools at
the intersection of artificial intelligence and linguis-
tics (Min et al., 2023; Thapa and Adhikari, 2023).
Their growing capabilities, marked by their ability
to understand and generate human-like text, present
an opportunity to automate the classification of ci-
tation functions and the extraction of associated
contextual information within the scientific litera-
ture.

In this paper, we introduce a comprehensive
approach that leverages recent advancements in
language models. Our methodology harnesses
the power of paraphrasing and question-answering
techniques to classify citation functions and ex-
tract relevant contextual spans within astrophysical
paragraphs. We emphasize the adaptability and ver-
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satility of this approach, showcasing its potential
applicability to various state-of-the-art language
models. Through our efforts, we aim to contribute
to the automation of citation function classification,
ultimately advancing the accessibility and utility of
astrophysics literature for researchers.

2 Task Description

The FOCAL (Function Of Citation in Astrophysics
Literature) challenge (Grezes et al., 2023) presents
a unique opportunity to delve into the intricate in-
terplay between scientific literature and automated
natural language processing.

2.1 Objective
Given a paragraph of text from the astrophysics
literature, the challenge aims to develop machine
learning models that can accurately determine why
a citation is made in a given paragraph of astro-
physics literature and identify the precise span of
text within that paragraph that justifies the citation’s
function.

2.2 Dataset
The dataset provided for the FOCAL shared task
consists of full-text fragments extracted from the
NASA Astrophysics Data System (ADS) and has
been meticulously annotated by domain experts to
include essential information for the task.

Each entry in the dataset1 for FOCAL 2023
adheres to the JSON Lines format, comprising a
JSON dictionary with the following key elements:

• “Identifier”: A unique string serving as an
identifier for the entry, ensuring traceability
and organization.

• “Paragraph”: A text string extracted from as-
trophysics papers, which forms the basis for
the citation function classification task.

• “Citation Text”: A list of strings representing
the citation(s) within the paragraph. While
in most cases, this is a single string, there
are instances where the citation text may be
divided into multiple strings.

In the training dataset, the following additional
information is provided:

• “Citation Start End”: A list of integer pairs
indicating the starting and ending positions of

1https://huggingface.co/datasets/adsabs/FOCAL

the citation(s) within the “Paragraph” text. In
cases where the citation text is divided, multi-
ple pairs are provided in corresponding order.

• “Functions Text”: A list of strings highlight-
ing portions of the paragraph that elucidate
the function(s) of the citation(s). These strings
serve as contextual evidence for understand-
ing why the citation(s) were made.

• “Functions Label”: A list of strings contain-
ing labels for each text element in "Functions
Text." These labels correspond to the classi-
fication of the citation(s)’ function(s) within
the paragraph.

• “Functions Start End”: A list of integer pairs
indicating the starting and ending positions
of the elements in "Functions Text" within
the "Paragraph" text. Similar to the "Citation
Start End" information, multiple pairs may
exist when the "Functions Text" is divided.

In some cases, when the pulse broadening
time is a significant fraction of the pulse
period (30 per cent or more) one can see a
relatively sharp pulse, but at the same time
the extended scattering tail may obscure the
real baseline level, which leads to an under-
estimation of the pulsar flux. For pulsars
with DMs in 200–300 pc cm-3 range this
usually happens between 300 and 600 MHz
(Lewandowski et al. 2013, 2015a). This
leads to a somewhat pseudo-correlation be-
tween high DM and GPS pulsars (Kijak et
al. 2007, 2011b) where serious underesti-
mation of the flux at lower frequencies for
high DM pulsars may give rise to an in-
verted spectra. The interferometric imaging
technique provide a more robust measure-
ment of the pulsar flux owing to the baseline
lying at zero level thereby reducing errors
made during the baseline subtraction.

As shown in the above paragraph, for the citation
“Kijak et al. 2007” with start position = 495 and
end position = 511, the expected model output is
as follows:

• Function Labels: [Uses, Uses]

• Functions Start End: [(418, 492), (521, 640)]
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Figure 1: Our proposed approach for predicting citation function and associated span of text. We conduct tests with
BERT, RoBERTa, DistillBERT, and ALBERT. A single language model (LM) is used for paraphrasing, sequence
classification, and question-answering throughout the pipeline, resulting in four different configurations for the four
models.

This output corresponds to the following textual
evidence for the citation function:

Function Text:

• “This leads to a somewhat pseudo-correlation
between high DM and GPS pulsars”

• “where serious underestimation of the flux at
lower frequencies for high DM pulsars may
give rise to an inverted spectra.”

3 System Description

Our model leverages paraphrasing of the para-
graphs and question answering for this task. Figure
1 shows the high-level overview of our model. We
describe the system below:

3.1 Preprocessing of Paragraphs

We preprocess the text to input to our model. In the
example paragraph shown above, we break them
down into further parts based on the number of
citations. For each citation, we take one fragment
out of the paragraph. For each citation, we take the
sentence in which the citation is up to the position
where next citation starts. For Lewandowski et al.
2013, 2015a as shown above, we use the text as
“For pulsars with DMs in 200–300 pc cm-3 range
this usually happens between 300 and 600 MHz
(Lewandowski et al. 2013, 2015a). This leads to
a somewhat pseudo-correlation between high DM
and GPS pulsars”. Similarly, if the citation is the
last one in the paragraph, we take the sentence in
which a citation is in till the end of the paragraph.
For Kijak et al. 2007, 2011b as shown above, we

use the text as “This leads to a somewhat pseudo-
correlation between high DM and GPS pulsars
(Kijak et al. 2007, 2011b) where serious underes-
timation of the flux at lower frequencies for high
DM pulsars may give rise to an inverted spectra.
The interferometric imaging technique provide a
more robust measurement of the pulsar flux owing
to the baseline lying at zero level thereby reduc-
ing errors made during the baseline subtraction.”
The preprocessed paragraphs are then fed into the
paraphrasing model.

3.2 Language Models
Specifically, we use four BERT-based language
models for paraphrasing, sequence classification,
and QA model which are briefly described as fol-
lows.

BERT has achieved remarkable success in lan-
guage understanding tasks by training on a massive
amount of text data in a bidirectional manner, al-
lowing it to understand the context and nuances
of words and phrases (Devlin et al., 2019). This
contextual understanding enables BERT to excel
in a wide range of natural language understanding
tasks, including text classification, question answer-
ing, and language translation (Papadopoulos et al.,
2022; Zhou and Srikumar, 2022; Veeramani et al.,
2023a,b,d,f). BERT’s pre-trained embeddings have
become a foundational resource in the world of
natural language processing, serving as a starting
point for various downstream tasks and research
advancements (Adhikari et al., 2023).

RoBERTa is an acronym for “A Robustly Op-
timized BERT Pretraining Approach” (Liu et al.,
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2019). It is a variant of the Bidirectional Encoder
Representations from Transformers (BERT) (De-
vlin et al., 2019) model. RoBERTa builds upon the
success of BERT by refining its pretraining method-
ology. It incorporates extensive training data, larger
batch sizes, and longer training times, resulting in
significantly improved performance on various nat-
ural language understanding tasks. RoBERTa is
known for its robustness and exceptional perfor-
mance on a wide range of text classification and
language understanding tasks.

ALBERT is a model designed to reduce the
computational and memory requirements of BERT
while maintaining or even improving its perfor-
mance (Lan et al., 2019). ALBERT achieves this
by introducing parameter-sharing techniques, effec-
tively reducing the model’s size and training time.
Despite its lighter architecture, ALBERT demon-
strates remarkable efficiency and competitive per-
formance across various natural language process-
ing tasks (Kanagasabai et al., 2023). Its ability to
handle large-scale text data with fewer computa-
tional resources makes it an appealing choice for
resource-efficient applications.

DistillBERT is a distilled version of the original
BERT model, emphasizing model compression and
efficiency (Sanh et al., 2019). DistillBERT retains
much of the performance of the larger BERT model
while significantly reducing its size and computa-
tional requirements. This model distillation process
involves training a smaller model (the “student”)
to mimic the behavior of a larger, more complex
model (the “teacher”). DistillBERT is character-
ized by its compact size, making it suitable for
deployment in resource-constrained environments
without compromising accuracy.

3.3 Paraphrasing using BERT-based Model
In our approach, we leverage BERT-based models
mentioned in section 3.2. BERT’s contextual em-
beddings enable us to rephrase citation-related text
effectively. We use paraphrasing in our pipeline in
order to limit the input context to a length of 512.

3.4 Sequence Classification
Sequence classification serves as a fundamental
component of our methodology (Cohan et al.,
2019b; Veeramani et al., 2023c,e). We employ
advanced language models mentioned in section
3.2 to classify the functions of citations within as-
trophysical paragraphs. This involves mapping

citation-related segments to predefined categories,
enabling us to clarify why each citation is made
within the context of the research paper. The output
is a multi-label output since a citation might be used
for multiple purposes. The sequence classification
component effectively outputs the “Functions La-
bel”.

3.5 Pseudo Question Generation

For each of the corresponding preprocessed text,
we use their “Function Label” to form a pseudo
question. This pseudo question serves as an input to
the QA model. We form questions as “What is the
paragraph segment that corresponds to the function
<FUNCTION LABEL>?” For example, if we are
looking for what part is background, our question
is formed as “What is the paragraph segment that
corresponds to the function background?”

3.6 BERT-based QA model

In our approach, we employ a BERT-based Ques-
tion Answering (QA) model to further enhance the
extraction of citation functions and their associated
context. The QA model plays a pivotal role in
our pipeline. The preprocessed text, as described
in section 3.1, serves as one of the two inputs to
our BERT-based QA model. This text contains the
segmented paragraphs with citation-related infor-
mation.

In our formulation, we formulate a pseudo ques-
tion for each segment of the preprocessed text as
the second input. This pseudo question is designed
to encapsulate the essence of the citation function
within the segment. It prompts the model to iden-
tify and extract the relevant information.

The output of our BERT-based QA model is a
pair of integer values denoting the starting and end-
ing positions of the citation function within the
segment of text. These values pinpoint the exact lo-
cation of the text that explains why the citation was
made. We make the necessary adjustments for the
offsets. By utilizing this QA model, we refine the
precision and accuracy of our approach, providing
explicit boundaries for the citation functions within
the context of astrophysical paragraphs.

4 Results

The results presented in Table 1 demonstrate the
performance of our approach utilizing various lan-
guage models on the validation dataset for the
FOCAL challenge. We evaluated our models
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using three key metrics: ‘seqeval_full’, ‘seqe-
val_generic’, and ‘labels_only’. Table

Model seqeval_full seqeval_generic labels_only

BERT 0.2222 0.4393 0.4100
DistillBERT 0.2215 0.4369 0.4985
RoBERTa 0.2369 0.4356 0.4166
ALBERT 0.2380 0.4396 0.4261

Table 1: Performance of our approach with different
language models on validation dataset

4.1 Validation Results
In terms of the ‘seqeval_full’ metric, which as-
sesses the overall ability to correctly classify the
functions of citations while ensuring accurate func-
tion labels, ALBERT achieved the highest score of
0.2380, closely followed by RoBERTa with a score
of 0.2369. BERT and DistillBERT also performed
reasonably well but exhibited slightly lower scores.

The ‘seqeval_generic’ metric, which evaluates
the model’s proficiency in identifying the por-
tions of the paragraph that explain the functions
of citations, showed a similar trend. ALBERT
outperformed the other models with a score of
0.4396, followed closely by BERT, DistillBERT,
and RoBERTa.

In terms of ‘labels_only’, which focuses solely
on the accuracy of predicted function labels, Dis-
tillBERT led the pack with an F1-score of 0.4261,
followed by ALBERT, RoBERTa, and BERT.

4.2 Test Results
In Table 2, we present the F1-score results on the
test dataset using our approach with three different
language models: BERT, RoBERTa, and ALBERT.
The F1-scores are reported for three different eval-
uation metrics: seqeval_full, seqeval_generic, and
labels_only.
seqeval_full Metrics: These metrics evaluate the
overall ability to correctly classify the functions of
citations while considering function labels.

• Micro F1-score: BERT achieved a micro F1-
score of 0.27, RoBERTa scored 0.27, and AL-
BERT outperformed both with a micro F1-
score of 0.30. Among the three, ALBERT
shows the highest performance in this aspect.

• Macro F1-score: BERT scored the high-
est macro F1-score of 0.13, followed by
RoBERTa (0.12) and ALBERT (0.12). BERT
exhibits the highest average F1 score across
different classes.

• Weighted F1-score: ALBERT achieves the
highest weighted F1-score of 0.28, followed
by BERT (0.28) and RoBERTa (0.28).

seqeval_generic Metrics: These metrics assess the
model’s proficiency in identifying portions of the
paragraph that explain citation functions, regardless
of the correctness of predicted function labels.

• Micro F1-score: ALBERT performs the best
with a micro F1-score of 0.48, followed by
RoBERTa (0.48) and BERT (0.47).

• Macro F1-score: ALBERT also achieves the
highest macro F1-score of 0.48, while BERT
and RoBERTa score similarly at 0.47 and 0.48
respectively.

• Weighted F1-score: ALBERT leads with a
weighted F1-score of 0.48, followed by BERT
(0.47) and RoBERTa (0.48).

labels_only Metrics: These metrics focus solely
on the accuracy of predicted function labels, ex-
cluding the assessment of identified spans in the
text.

• Micro F1-score: ALBERT outperforms the
other models with a micro F1-score of 0.58,
while BERT scores 0.48 and RoBERTa scores
0.48.

• Macro F1-score: BERT and RoBERTa have
similar macro F1-scores of 0.24 and 0.22, re-
spectively, while ALBERT scores lower at
0.21.

• Weighted F1-score: BERT achieves the high-
est weighted F1-score of 0.54, followed by
ALBERT (0.53) and RoBERTa (0.53).

Overall, these results suggest that ALBERT con-
sistently performs well across all three evaluation
metrics, indicating its effectiveness in classifying
citation functions and extracting contextual infor-
mation within astrophysical literature. However,
it’s important to note that all models demonstrated
reasonable performance, underscoring the viability
of our approach across different language models.

5 Conclusions

In this paper, we have presented a comprehensive
approach for automated citation function classi-
fication and context extraction in the domain of
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Model
seqeval_full seqeval_generic labels_only

micro macro weighted micro macro weighted micro macro weighted

BERT 0.27 0.13 0.28 0.47 0.47 0.47 0.48 0.24 0.54
RoBERTa 0.27 0.12 0.28 0.48 0.48 0.48 0.48 0.22 0.53
ALBERT 0.30 0.12 0.28 0.48 0.48 0.48 0.58 0.21 0.53

Table 2: F1-score on the test dataset using our approach.

astrophysics literature. Leveraging advanced lan-
guage models, including BERT, RoBERTa, AL-
BERT, and DistillBERT, our system showcases
a robust pipeline that combines paraphrasing and
question-answering techniques to achieve accurate
and insightful results. Our experiments demon-
strate the robustness of our approach, with AL-
BERT consistently performing well in classifying
citation functions and extracting contextual infor-
mation. However, all models exhibit reasonable
performance, showcasing the adaptability of our
system. In the future, we aim to refine our approach
further, potentially incorporating more advanced
models and techniques to enhance citation func-
tion classification and context extraction for deeper
insights in astrophysical research.

Limitations

The limitations of this work include the potential
challenges associated with accurately classifying
citation functions within the nuanced landscape
of astrophysical literature. Despite the effective-
ness of our approach, the inherent complexity and
subjectivity of citation functions may result in in-
stances of misclassification or incomplete under-
standing. Finally, while we strive for generalizabil-
ity, the specificities of astrophysical language and
citation practices may limit the applicability of our
approach to other scientific domains.

Ethics Statement

Our study adheres to principles of academic in-
tegrity, transparency, and respect for intellectual
property rights. We have meticulously cited and
credited all sources and data used in our work, en-
suring due recognition for prior research contribu-
tions.
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Abstract

In this article, we describe the overview of
our shared task: Function of Citation in As-
trophysics Literature (FOCAL). The FOCAL
shared task was part of the Workshop on Infor-
mation Extraction from Scientific Publications
(WIESP)1 in IJCNLP-AACL 2023. Informa-
tion extraction from scientific publications is
critical in several downstream tasks such as
identification of critical entities, article summa-
rization, citation classification, etc. In partic-
ular, the citation graph is an essential tool for
helping researchers find relevant literature. To
further empower discovery, the motivation of
this shared task was to develop a community-
wide effort to label the edges of the graph with
the function of the citation: e.g. is the cited
work necessary background knowledge, or is it
used as a comparison, to the citing work? We
propose a shared task of automatically labeling
citations with a function based on the textual
context of the citation, and analyze the systems,
performances, and findings of FOCAL partici-
pants.

1 Introduction

In addition to its archival mission, the NASA As-
trophysics Data System (Kurtz et al., 2000) aims
to empower astrophysics researchers in their work.
One powerful tool at their disposal is access to the
citation graph, allowing them to find papers related
to, and quantify the impact of, their research. By
enriching the edges of the citation graph with la-
bels that explain why a citation was made, and the
relevant textual context to understand the citation,
researchers can more rapidly assess the literature,
and gain more granularity into impact metrics. For
example a researcher who is already familiar with
the Background of a topic may primarily be in-
terested in citations that Compare / Contrast with
other works. Further, by augmenting impact met-

1https://ui.adsabs.harvard.edu/WIESP/

Figure 1: Sample annotation. The citation Arzoumanian
et al. 2011 is used as Background by the authors of this
paragraph.

rics, such as citation counts, with metrics pertain-
ing to citation function, researchers can gain finer
grained insight into the impact of their work, e.g.
if they provide the Motivation for the citing work
or the Background. Large scale labeling of the ci-
tation graph requires automated methods. In our
FOCAL@WIESP2023 shared task, we instigate a
community initiative to design such methods.

2 Task

2.1 Definition

The shared task Function of Citation in Astro-
physics Literature (FOCAL) (Grezes et al., 2023)
consists of automatically labeling citations with a
function based on the textual context of the citation.

More precisely, given a paragraph of text from
the astrophysics literature, and the start and end
position of a citation in the paragraph, the FOCAL
participants are tasked with building a model that
outputs why it was cited (the function) and the as-
sociated span of text in the paragraph (the context).
Figure 1 shows a sample annotation.

2.2 Evaluation

For evaluation, submissions were first tokenized
into words using the default spaCy tokenizer (Hon-
nibal et al., 2020); references and predictions were
converted into IOB2 style labels; and finally scored
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by three metrics derived from the CoNLL-2000
shared task seqeval (Nakayama, 2018):

• Full Seqeval: the full seqeval score and main
evaluation metric. This metrics check that the
functions of the citation were placed correctly
in the paragraph along with the correct func-
tion labels.

• Generic Label Seqeval: a seqeval score with a
generic label instead of functions. This met-
ric checks that the parts of the paragraph that
explain the functions of the citation were cor-
rectly found, without checking if the reason(s)
a given citation was made (the function labels)
were correctly predicted.

• Labels Only F1: an F1-score on the function
labels only. This metric checks that the rea-
son(s) a given citation was made were cor-
rectly predicted, without checking if the parts
of the paragraph that explain the function of
the citation were correctly found.

All reported scores use micro-averaging.

3 Dataset Description

3.1 Data Collection and Creation

The dataset consists of paragraph sized text frag-
ments that were curated from over 25,000 astron-
omy articles, from the Astrophysical literature. The
journals that the text fragments were obtained from
are the Astrophysical Journal, Astronomy & As-
trophysics, and the Monthly Notices of the Royal
Astronomical Society. All text fragments are from
recent publications, between the years of 2015 and
2023. From this set of articles, over 2 million ci-
tations and their context were harvested. Further,
only citations with context sizes between 2,000
and 10,000 characters are selected. A domain area
expert manually examined these text fragments to
determine the citation function as well as label the
relevant context.

We are considering a set of eight potential cita-
tion functions. These are:

• Background: The cited work provides back-
ground information needed to understand the
citing work

• Motivation: The cited work is motivating the
citing work

Function
Split

Train Val Test

Background 1607 390 438
Uses 877 230 530

Compare/Contrast 615 178 140
Similarities 279 50 72
Motivation 233 70 56
Differences 125 24 40
Future Work 40 9 4

Extends 9 5 2
Totals 3785 956 1282

Table 1: Counts of function labels in the dataset. Note
that totals are larger than dataset sizes because some
samples have multiple function labels associated.

• Uses: The citing work used a result from the
cited work

• Extends: The citing work extends a result
from the cited work.

• Similarities: Results from the cited work are
similar to results from the citing (or another)
work.

• Differences: Results from the cited work are
different to results from the citing (or another)
work.

• Compare/Contrast: Results are being com-
pared in a neutral manner between the cited
and the citing (or another) work.

• Future Work: Citing work contains implica-
tions for future research that are beyond the
scope of the citing work.

These citation functions were selected because
of their similarity to the classification scheme used
in Pride and Knoth (2020), see table 3 in the ap-
pendix for a full description with examples.

3.2 Data Segmentation for Shared Task
The FOCAL dataset consists of 3 components, the
training dataset consisting of 2421 samples, the
validation dataset consisting of 606 samples, and
the testing dataset consisting of 821 samples. Table
1 shows the counting statistics of the function labels
for each component.

4 Participant Systems

Ikoma and Matsubara (2023) proposed a SciBERT-
based sequence labelling system that outputs IOB2
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Model Baseline (Ikoma and Matsubara, 2023) Veeramani et al. (2023)

Metric
Split

val test val test val test

Full Seqeval 23.68 20.94 54.08 51.87 23.79 30.17
Generic Label Seqeval 59.86 54.55 79.92 73.00 43.96 47.65

Labels Only F1 42.87 35.99 65.94 69.44 42.61 57.51

Table 2: Main FOCAL@WIESP 2023 shared task results. All scores computed using micro-averaging.

tags, and uses statistical insights on which sen-
tences (preceding, citing, following) contain func-
tion labels to limit the range of the input text to
what the language model can handle. The authors
explore the performance of multiple BERT-based
models.

Veeramani et al. (2023) proposed a system that
leverages state-of-the-art BERT-based language
models and combines paraphrasing and question-
answering techniques. Paraphrasing is used in the
pipeline to reduce the text input length to 512 to-
kens, allowing for sequence classification models
to be applied, which provide the function label of
the citation. To find the boundaries of the function,
the authors apply BERT-based Question Answering
techniques.

In addition to the above papers, two submissions
were made to the Codalab platform hosting the
shared task2.

4.1 Baseline
Baseline scores from a simple model are provided
as benchmark for the participants. This model is
defined as follows:

• the function of the citation is the majority
class (i.e. Background).

• the start and end of the function is the sentence
that includes citation, as defined by pySBD
(Sadvilkar and Neumann, 2020).

5 Results, Analysis, and Findings of
FOCAL

We report the results of the participating teams in
table 2. Both systems were able to outperform the
baseline on the Full Seqeval and Labels-Only met-
ric, but only Ikoma and Matsubara (2023) were able
to improve on the Generic Label Seqeval. Upon
further analysis, this is likely due to the method
used by Veeramani et al. (2023) to label functions,

2https://codalab.lisn.upsaclay.fr/
competitions/15292

which does not incorporate information specific
to the citation given, versus any other that may
appear in the paragraph. Indeed this difficulty is
central to the task. Models cannot solely rely on
the text of the paragraph to make function label
predictions, since those will differ from citation to
citation present in the text.

Both submissions make extensive use of BERT-
based models, highlighting just how generically
useful and practical those models have become,
even as state-of-the-art architectures have grown
much larger (ex: BLOOM, LLAMA2, etc ...).

6 Conclusion and Future Directions

The results of the FOCAL@WIESP2023 shared
task show that the task of labelling the citation
graph and locating the text relevant to the citation is
far from solved. One aspect that future challenges
can improve upon is the quantity of labeled data
along with inter-annotator agreement statistics, to
confirm that the task is sound and well understood.
The advent of open-source Large Language Models
also may be used as zero-shot systems that can form
a more robust and challenging baseline.
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Label Definition Example
Background Citation whose purpose is to

provide background informa-
tion so that the reader can un-
derstand the problem, or the ob-
ject.

The AGN in these systems have been
shown to deposit vast amounts of energy
into the surrounding intracluster medium
via heating and (mega-parsec scale) jets
both observationally and by means of mod-
elling (e.g. Binney 2004...

Motivation Citation that is used to justify
the current work or problem.

Unlike NGC 3894, for which no observa-
tions with Cherenkov telescopes have been
performed, M 87 and 3C 84 are also de-
tected at very high energy (VHE, E >100
GeV; Aharonian et al. 2006

Uses Result or idea from cited work
is used in the current work.
Could be in the form of using
data or an idea to build an argu-
ment.

Our data set consists of 4348 hr of data
in both the nominal LPF configuration
and the “Disturbance Reduction System”
(DRS) configuration, in which a NASA-
supplied controller and thruster system
took over control of the spacecraft (An-
derson et al. 2018).

Extends Citing work is extending the re-
sults of the cited work.

In doing so we extend the analysis of
Planck Collaboration Int. XXXVIII (2016)
and Planck Collaboration Int. XLIV
(2016) to sky areas in which the filaments
have very little contrast with respect to the
diffuse background emission.

Similarities There are similarities, in results
or observations, between the
cited and citing works,

All of these galaxies are consistent with
the relationship between X-ray luminosity
and mid-IR luminosity for starburst galax-
ies (. . . ; Sell et al. 2014).

Differences There are differences, in results
or observations, between the
cited and citing works,

We also remark that the expression from
Mishima et al. (1983) would give a pen-
etration depth of 56 m at 2.2 cm, which
is an order of magnitude larger than indi-
cated by the laboratory measurements of
Paillou et al. (2008)

Compare/Contrast A neutral comparison between
works or ideas

At these early epochs, this difference could
be caused by the poor constraints on the
GSMFs adopted by Duncan et al. (2019)
which result in large uncertainties on their
data, making it impossible to draw robust
conclusions at z ∼5.

Future Work Used when cited work provides
a means to expand the scope of
the citing work

The study presented here will also be fur-
ther extended to explore the effects of dif-
ferent retention fractions of dark remnants
(neutron stars and black holes; see, e.g.,
Giersz et al. 2019

Table 3: Definitions of the FOCAL labels.
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