Dissect two-halo galactic conformity effect for central galaxies: the dependence of star formation activities on the large-scale environment
Abstract
We investigate the two-halo galactic conformity effect for central galaxies, which is the spatial correlation of the star formation activities for central galaxies to several Mpcs, by studying the dependence of the star formation activities of central galaxies on their large-scale structure in our local Universe using the SDSS data. Here we adopt a novel environment metric using only central galaxies quantified by the distance to the nth nearest central galaxy. This metric measures the environment within an aperture from ~1 to ≳ 10 Mpc, with a median value of ~4 Mpc. We found that two kinds of conformity effects in our local Universe. The first one is that low-mass central galaxies are more quenched in high-density regions, and we found that this effect mainly comes from low-mass centrals that are close to a more massive halo. A similar trend is also found in the IllustrisTNG simulation, which can be entirely explained by backsplash galaxies. The second conformity effect is that massive central galaxies in low-density regions are more star-forming. This population of galaxies also possesses a higher fraction of spiral morphology and lower central stellar velocity dispersion, suggesting that their low quiescent fraction is due to less-frequent major merger events experienced in the low-density regions and, as a consequence, less-massive bulges and central black holes.
- Publication:
-
Monthly Notices of the Royal Astronomical Society
- Pub Date:
- July 2023
- DOI:
- 10.1093/mnras/stad1169
- arXiv:
- arXiv:2304.06886
- Bibcode:
- 2023MNRAS.523.1268W
- Keywords:
-
- methods: statistical;
- galaxies: groups: general;
- dark matter;
- large-scale structure of Universe;
- Astrophysics - Astrophysics of Galaxies;
- Astrophysics - Cosmology and Nongalactic Astrophysics
- E-Print:
- 13 pages, 9 figures, MNRAS 523 1268