UNCOVER: Significant Reddening in Cosmic Noon Quiescent Galaxies
Abstract
We explore the physical properties of five massive quiescent galaxies at $z\sim2.5$, revealing the presence of non-negligible dust reservoirs. JWST NIRSpec observations were obtained for each target, finding no significant line emission; multiple star formation tracers independently place upper limits between $0.1-10~M_\odot / \mathrm{yr}$. Spectral energy distribution modeling with Prospector infers stellar masses between $\log_{10}[M / M_\odot] \sim 10-11$ and stellar mass-weighted ages between $1-2$ Gyr. The inferred mass-weighted effective radii ($r_{eff}\sim 0.4-1.4$ kpc) and inner $1$ kpc stellar surface densities ($\log_{10}[\Sigma / M_\odot \mathrm{kpc}^2 ]\gtrsim 9$) are typical of quiescent galaxies at $z \gtrsim 2$. The galaxies display negative color gradients (redder core and bluer outskirts); for one galaxy, this effect results from a dusty core, while for the others it may be evidence of an "inside-out" growth process. Unlike local quiescent galaxies, we identify significant reddening in these typical cosmic noon passive galaxies; all but one require $A_V \gtrsim 0.4$. This finding is in qualitative agreement with previous studies but our deep 20-band NIRCam imaging is able to significantly suppress the dust-age degeneracy and confidently determine that these galaxies are reddened. We speculate about the physical effects that may drive the decline in dust content in quiescent galaxies over cosmic time.
- Publication:
-
arXiv e-prints
- Pub Date:
- September 2024
- DOI:
- arXiv:
- arXiv:2409.11457
- Bibcode:
- 2024arXiv240911457S
- Keywords:
-
- Astrophysics - Astrophysics of Galaxies
- E-Print:
- 18 pages, 8 figures, submitted to ApJ