Carbon and Iron Deficiencies in Quiescent Galaxies at z=1-3 from JWST-SUSPENSE: Implications for the Formation Histories of Massive Galaxies
Abstract
We present the stellar metallicities and multi-element abundances (C, Mg, Si, Ca, Ti, Cr, and Fe) of 15 massive (log $M/M_\odot=10.2-11.2$) quiescent galaxies at z=1-3, derived from ultradeep JWST-SUSPENSE spectra. Compared to quiescent galaxies at z~0, these galaxies exhibit a deficiency of 0.26$\pm0.04$ dex in [C/H], 0.16$\pm0.03$ dex in [Fe/H], and 0.07$\pm0.04$ dex in [Mg/H], implying rapid formation and quenching before significant enrichment from asymptotic giant branch stars and Type Ia supernovae. Additionally, we find that galaxies forming at higher redshift consistently show higher [Mg/Fe] and lower [Fe/H] and [Mg/H], regardless of their observed redshift. The evolution in [Fe/H] and [C/H] is therefore primarily driven by lower-redshift samples naturally including galaxies with longer star-formation timescales. In contrast, the lower [Mg/H] likely reflects earlier-forming galaxies expelling larger gas reservoirs during their quenching phase. Consequently, the mass-metallicity relation, primarily reflecting [Mg/H], is somewhat lower at z=1-3 compared to the lower redshift relation. Finally, we compare our results to standard stellar population modeling approaches employing solar abundance patterns and non-parametric star-formation histories (using Prospector). Our SSP-equivalent ages agree with the mass-weighted ages from Prospector, while the metallicities disagree significantly. Nonetheless, the metallicities better reflect [Fe/H] than total [Z/H]. We also find that star-formation timescales inferred from elemental abundances are significantly shorter than those from Prospector, and we discuss the resulting implications for the early formation of massive galaxies.
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2024
- DOI:
- arXiv:
- arXiv:2407.02556
- Bibcode:
- 2024arXiv240702556B
- Keywords:
-
- Astrophysics - Astrophysics of Galaxies
- E-Print:
- Accepted to ApJ