Euclid: Fast two-point correlation function covariance through linear construction
Abstract
We present a method for fast evaluation of the covariance matrix for a two-point galaxy correlation function (2PCF) measured with the Landy-Szalay estimator. The standard way of evaluating the covariance matrix consists in running the estimator on a large number of mock catalogs, and evaluating their sample covariance. With large random catalog sizes (random-to-data objects' ratio M ≫ 1) the computational cost of the standard method is dominated by that of counting the data-random and random-random pairs, while the uncertainty of the estimate is dominated by that of data-data pairs. We present a method called Linear Construction (LC), where the covariance is estimated for small random catalogs with a size of M = 1 and M = 2, and the covariance for arbitrary M is constructed as a linear combination of the two. We show that the LC covariance estimate is unbiased. We validated the method with PINOCCHIO simulations in the range r = 20 − 200 h−1 Mpc. With M = 50 and with 2 h−1 Mpc bins, the theoretical speedup of the method is a factor of 14. We discuss the impact on the precision matrix and parameter estimation, and present a formula for the covariance of covariance.
This paper is published on behalf of the Euclid Consortium.- Publication:
-
Astronomy and Astrophysics
- Pub Date:
- October 2022
- DOI:
- arXiv:
- arXiv:2205.11852
- Bibcode:
- 2022A&A...666A.129K
- Keywords:
-
- cosmology: observations;
- large-scale structure of Universe;
- methods: data analysis;
- methods: statistical;
- Astrophysics - Cosmology and Nongalactic Astrophysics
- E-Print:
- 17 pages, 11 figures