The Magnetic Sensitivity of the Resonance and Subordinate Lines of Mg II in the Solar Chromosphere
Abstract
We carry out a theoretical study of the polarization of the solar Mg II h-k doublet (including its extended wings) and the subordinate ultraviolet (UV) triplet around 280 nm. These lines are of great diagnostic interest, as they encode information on the physical properties of the solar atmosphere from the upper photosphere to the chromosphere-corona transition region. We base our study on radiative transfer calculations of spectral line polarization in one-dimensional models of quiet and plage regions of the solar atmosphere. Our calculations take into account the combined action of atomic polarization, quantum level interference, frequency redistribution, and magnetic fields of arbitrary strength. In particular, we study the sensitivity of the emergent Stokes profiles to changes in the magnetic field through the Zeeman and Hanle effects. We also study the impact of the chromospheric plasma dynamics on the emergent Stokes profiles, taking into account the angle-dependent frequency redistribution in the h-k resonance transitions. The results presented here are of interest for the interpretation of spectropolarimetric observations in this important region of the solar UV spectrum.
- Publication:
-
The Astrophysical Journal
- Pub Date:
- March 2020
- DOI:
- 10.3847/1538-4357/ab6bc9
- arXiv:
- arXiv:2004.09176
- Bibcode:
- 2020ApJ...891...91D
- Keywords:
-
- Quiet solar chromosphere;
- Active solar chromosphere;
- Solar transition region;
- Solar magnetic fields;
- Spectropolarimetry;
- Radiative transfer simulations;
- 1986;
- 1980;
- 1532;
- 1503;
- 1973;
- 1967;
- Astrophysics - Solar and Stellar Astrophysics
- E-Print:
- 2020, The Astrophysical Journal, Volume 891, Issue 1, id.91