Performance of multiple hydrologic models under climate change in the Yongdam Catchment, South Korea
Abstract
Hydrologic models are frequently employed when observing the effects of climate change in water resources. As with climate change research, sources of uncertainty plays a major role in the accuracy of flow projections. A source of uncertainty is the performance of the parameters for the hydrologic models applied with comparison to the observed values. This study observes the performance of multiple hydrologic models and parameter estimation under climate change scenarios for the Yongdam catchment in South Korea. A combination of three hydrologic models are observed using different calibration methods. Mode'le du Ge`nie Rural a' 4 parame'tres Journalier (GR4J), Identification of unit hydrographs and component flows from rainfall, evapotranspiration, and streamflow (IHACRES), and Soil and Water Assessment Tool (SWAT) are used with Hadley Centre Global Environmental Model version 3 regional climate model projections are compared with the observed values. Parameter estimation methods were applied and uncertainty analysis was performed. The performance of the hydrologic models were also compared through categorized flow for different phases of the hydrograph (high flow, moist flow, mid-range flow, dry flow, and low flow). This study employs the use of Seoul National University - Climate change impact Assessment for Hydrology Library, SNU-CAHL, for multi-model flow generation under climate change in the R programming language. SNU-CAHL is a library tool to automate flow generation and performance studies. AcknowledgementThis study is supposed by the Korean Ministry of Environment as "Climate Change Correspondence Program (project number: 2014001310007)".
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2016
- Bibcode:
- 2016AGUFM.H43H1561K
- Keywords:
-
- 1805 Computational hydrology;
- HYDROLOGYDE: 1821 Floods;
- HYDROLOGYDE: 1847 Modeling;
- HYDROLOGYDE: 1860 Streamflow;
- HYDROLOGY