Exploring the Role of Nanoscale Zero Valent Iron and Bacteria on the Degradation of a Multi-component Chlorinated Solvent at the Field Scale
Abstract
Nanoscale zero valent iron (nZVI) has advanced as a technology for the remediation of priority source zone contaminants in response to early laboratory studies that showed rapid rates of compound degradation. The challenges associated with the delivery of nZVI particles (eg. rapid aggregation and settling) were partially resolved with the addition of a polyelectrolyte polymers, like Carboxymethyl cellulose, that significantly improves the colloidal stability of particles allowing for more controlled injection and transport in the subsurface. Following nZVI application and abiotic contaminant degradation nZVI oxidizes and yields reducing conditions. These reducing conditions are ideal for many dechlorinating bacteria. Given this, application of nZVI for abiotic contaminant degradation followed by bioremediation has become an area of active research interest. In this study nZVI was injected into a contaminated sandy subsurface area. Concentrations of a range of chlorinated compounds, including chlorinated ethenes, ethanes, and methanes were monitored in detail following nano-particle injection in order to access short term abiotic degradation. Monitoring continued over a 2 year period to evaluate the long term effects of nZVI injection on the bacterial communities and the biotic degradation of targeted chlorinated compounds. The study focusses on the degradation and evolution of intermediate compounds from reaction with targeted contaminant compounds along the nZVI flow path. Bacterial populations were quantified before injection to confirm that beneficial chloride reducing bacteria were present on site. The microbiological response to the injection of nZVI was studied and the performance of bacteria along the nZVI flow path and outside the nZVI affected area will be compared.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFM.H33C1366K
- Keywords:
-
- 1832 HYDROLOGY Groundwater transport;
- 1831 HYDROLOGY Groundwater quality;
- 0418 BIOGEOSCIENCES Bioremediation