Approximate Bayesian Computation Using Markov Chain Monte Carlo Simulation: Theory, Concepts, and Applications
Abstract
The ever increasing pace of computational power, along with continued advances in measurement technologies and improvements in process understanding has stimulated the development of increasingly complex hydrologic models that simulate soil moisture flow, groundwater recharge, surface runoff, root water uptake, and river discharge at increasingly finer spatial and temporal scales. Reconciling these system models with field and remote sensing data is a difficult task, particularly because average measures of model/data similarity inherently lack the power to provide a meaningful comparative evaluation of the consistency in model form and function. The very construction of the likelihood function - as a summary variable of the (usually averaged) properties of the error residuals - dilutes and mixes the available information into an index having little remaining correspondence to specific behaviors of the system (Gupta et al., 2008). The quest for a more powerful method for model evaluation has inspired Vrugt and Sadegh [2013] to introduce "likelihood-free" inference as vehicle for diagnostic model evaluation. This class of methods is also referred to as Approximate Bayesian Computation (ABC) and relaxes the need for an explicit likelihood function in favor of one or multiple different summary statistics rooted in hydrologic theory that together have a much stronger and compelling diagnostic power than some aggregated measure of the size of the error residuals. Here, we will introduce an efficient ABC sampling method that is orders of magnitude faster in exploring the posterior parameter distribution than commonly used rejection and Population Monte Carlo (PMC) samplers. Our methodology uses Markov Chain Monte Carlo simulation with DREAM, and takes advantage of a simple computational trick to resolve discontinuity problems with the application of set-theoretic summary statistics. We will also demonstrate a set of summary statistics that are rather insensitive to errors in the forcing data. This enhances prospects of detecting model structural deficiencies.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFM.H24F..07S
- Keywords:
-
- 1873 HYDROLOGY Uncertainty assessment;
- 1846 HYDROLOGY Model calibration;
- 1847 HYDROLOGY Modeling