The Mira variable S Orionis: relationships between the photosphere, molecular layer, dust shell, and SiO maser shell at 4 epochs
Abstract
Aims:We present the first multi-epoch study that includes concurrent mid-infrared and radio interferometry of an oxygen-rich Mira star.
Methods: We obtained mid-infrared interferometry of S Ori with VLTI/MIDI at four epochs in December 2004, February/March 2005, November 2005, and December 2005. We concurrently observed v=1, J=1-0 (43.1 GHz), and v=2, J=1-0 (42.8 GHz) SiO maser emission toward S Ori with the VLBA in January, February, and November 2005. The MIDI data are analyzed using self-excited dynamic model atmospheres including molecular layers, complemented by a radiative transfer model of the circumstellar dust shell. The VLBA data are reduced to the spatial structure and kinematics of the maser spots.
Results: The modeling of our MIDI data results in phase-dependent continuum photospheric angular diameters of 9.0 ± 0.3 mas (phase 0.42), 7.9 ± 0.1 mas (0.55), 9.7 ± 0.1 mas (1.16), and 9.5 ± 0.4 mas (1.27). The dust shell can best be modeled with Al2O3 grains using phase-dependent inner boundary radii between 1.8 and 2.4 photospheric radii. The dust shell appears to be more compact with greater optical depth near visual minimum (τ_V∼ 2.5), and more extended with lower optical depth after visual maximum (τ_V∼ 1.5). The ratios of the 43.1 GHz/42.8 GHz SiO maser ring radii to the photospheric radii are 2.2 ± 0.3/2.1 ± 0.2 (phase 0.44), 2.4 ± 0.3/2.3 ± 0.4 (0.55), and 2.1 ± 0.3/1.9 ± 0.2 (1.15). The maser spots mark the region of the molecular atmospheric layers just beyond the steepest decrease in the mid-infrared model intensity profile. Their velocity structure indicates a radial gas expansion.
Conclusions: S Ori shows significant phase-dependences of photospheric radii and dust shell parameters. Al2O3 dust grains and SiO maser spots form at relatively small radii of ~1.8-2.4 photospheric radii. Our results suggest increased mass loss and dust formation close to the surface near the minimum visual phase, when Al2O3 dust grains are co-located with the molecular gas and the SiO maser shells, and a more expanded dust shell after visual maximum. Silicon does not appear to be bound in dust, as our data show no sign of silicate grains.
- Publication:
-
Astronomy and Astrophysics
- Pub Date:
- July 2007
- DOI:
- arXiv:
- arXiv:0705.4614
- Bibcode:
- 2007A&A...470..191W
- Keywords:
-
- techniques: interferometric;
- masers;
- stars: AGB and post-AGB;
- stars: atmospheres;
- stars: mass-loss;
- stars: individual: <ASTROBJ>S Orionis</ASTROBJ>;
- Astrophysics
- E-Print:
- Accepted for publication in A&