Multi-wavelength afterglow observations of the high redshift GRB 050730
Abstract
Context: .GRB 050730 is a long duration high-redshift burst (z=3.967) that was discovered by Swift. The afterglow shows variability and was well monitored over a wide wavelength range. We present comprehensive temporal and spectral analysis of the afterglow of GRB 050730 including observations covering the wavelength range from the millimeter to X-rays.
Aims: .We use multi-wavelength afterglow data to understand the complex temporal and spectral decay properties of this high redshift burst.
Methods: .Five telescopes were used to study the decaying afterglow of GRB 050730 in the B, V, r', R, i', I, J and K photometric pass bands. A spectral energy distribution was constructed at 2.9 h post-burst in the B, V, R, I, J and K bands. X-ray data from the satellites Swift and XMM-Newton were used to study the afterglow evolution at higher energies.
Results: .The early afterglow shows variability at early times and the slope steepens at 0.1 days (8.6 ks) in the B, V, r', R, i', I, J and K passbands. The early afterglow light curve decayed with a powerlaw slope index α1 = -0.60±0.07 and subsequently steepened to α2 = -1.71±0.06 based on the R and I band data. A millimeter detection of the afterglow around 3 days after the burst shows an excess in comparison to theoretical predictions. The early X-ray light curve observed by Swift is complex and contains flares. At late times the X-ray light curve can be fit by a powerlaw decay with αx = -2.5±0.15 which is steeper than the optical light curve. A spectral energy distribution (SED) was constructed at ~2.9 h after the burst. An electron energy index, p, of ~2.3 was calculated using the SED and the photon index from the X-ray afterglow spectra and implies that the synchrotron cooling frequency νc is above the X-ray band.
- Publication:
-
Astronomy and Astrophysics
- Pub Date:
- December 2006
- DOI:
- arXiv:
- arXiv:astro-ph/0607471
- Bibcode:
- 2006A&A...460..415P
- Keywords:
-
- gamma ray: bursts;
- techniques: photometric;
- Astrophysics
- E-Print:
- 12 pages, 10 figures, Accepted for publication in A&