Lunar meteorite Queen Alexandra Range 93069: A lunar highland regolith breccia with very low abundances of mafic components
Abstract
Lunar meteorite QUE 93069 found in Antarctica is a mature, anorthitic regolith breccia with highland affinities that was ejected from the Moon <0.3 Ma ago. The frequency distribution of mineral and lithic clasts gives information about the nature of the regolith and subregolith basement near the ejection site as well as about the abundances of rock types shocked to different degrees prior to the breccia formation.
Thin section QUE 93069,37 consists of 67.5 vol% fine-grained (<∼130 μm) constituents and 32.5 vol% mineral and lithic clasts and an impact melt vein. The most abundant types of these clasts are intragranularly recrystallized anorthosites and plagioclases (together 26.3 vol%) and feldspathic fine-grained to microporphyritic crystalline melt breccias (21.9 vol%). Mafic crystalline melt breccias are extremely rare (1.3 vol%). Granulitic lithologies are 10.4 vol%, recrystallized feldspathic melt breccias are 15.0 vol%, and glasses are 3.5 vol%. The impact melt vein cutting across the entire thin section was probably formed subsequent to the lithification process of the bulk rock at pressures below 20 GPa, because the bulk rock never experienced a higher peak shock pressure. Lunar meteorite QUE 93069 has a higher abundance of clear glass, occurring within melt spherules, glassy fragments, and an impact melt vein than lunar meteorites ALHA81005, Y-791197, Y-82192/3, Y-86032, or MAC 88104/5. The high abundance of melt spherules indicates that this lunar meteorite contains the highest content of typical regolith components. Mafic crystalline melt breccias are much rarer in QUE 93069 than in all other lunar highland regolith breccias. The extremely low abundance of mafic components may constrain possible areas of the Moon, from which the breccia was derived. The source area of QUE 93069 must be a highland terrain lacking significant mafic impact melts or mare components.- Publication:
-
Meteoritics and Planetary Science
- Pub Date:
- November 1996
- DOI:
- Bibcode:
- 1996M&PS...31..849B